Spiropentane Mimics of Nucleosides: Analogues of 2'-Deoxyadenosine and 2'-Deoxyguanosine. Synthesis of All Stereoisomers, Isomeric Assignment, and Biological Activity

Hui-Ping Guan,[†] Mohamad B. Ksebati,[‡] Yung-Chi Cheng,[§] John C. Drach,[⊥] Earl R. Kern,[∥] and Jiri Zemlicka*,†

Department of Chemistry, Experimental and Clinical Chemotherapy Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 110 East Warren Avenue, Detroit, Michigan 48201-1379, Central Instrumentation Facility, Department of Chemistry, Wayne State University, Detroit, Michigan 48202, Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510-8066, Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48019-1078, and Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama 35294

Received June 28, 1999

Synthesis of spirocyclic analogues of 2'-deoxyadenosine and 2'-deoxyguanosine (12a-15a and 12b-**15b**) is described. Rhodium-catalyzed reaction of ethyl diazoacetate with methylenecyclopropane 19, obtained from 2-bromo-2-bromomethylcyclopropane 17 via debromination (16), reduction (18), and acetylation (19), gave a mixture of all four isomeric spiropentanes 20a-20d. Hydrolysis afforded hydroxy carboxylic acids **21a-21d**. Acetylation of separated *proximal* + *medial-syn* isomers **21a** + **21b** and *medial anti* + *distal* isomers 21c + 21d furnished acetates 22a + 22b and 22c + 22d. Curtius rearrangement effected by diphenylphosphoryl azide in tert-butyl alcohol performed separately with mixtures 22a + 22b and 22c + 22d led to BOC-amino spiropentanes 23a + 23band 23c + 23d. After deacetylation all isomers 24a - 24d were separated and deprotected to give aminospiropentane hydrochlorides 25a-25d. Free bases were of limited stability. The heterocyclic moieties were introduced into individual isomers 25a-25d via 6-chloropurine derivatives 26a-26d or 30a-30d. Ammonolysis of 26a-26d furnished the adenine isomeric series 12a-15a, whereas guanine derivatives 12b-15b were obtained by hydrolysis of 30a-30d with formic acid. The isomeric assignments followed from IR spectra of BOC-aminospiropentanes 24a-24d and NMR spectra of **12a–15a** including NOE and (H,H) COSY. The proximal and medial-syn isomers **12a** and **12b** were modest inhibitors of human cytomegalovirus (HCMV) and Epstein-Barr virus (EBV) in culture, whereas the *medial-anti* isomer **12c** was a substrate for adenosine deaminase. The distal isomer 15b was an anti-EBV agent. The *medial-syn* phosphoralaninate 34 was an effective inhibitor of HCMV replication in vitro. It was also active against herpes simplex virus type 1 (HSV-1), varicella zoster virus (VZV), human immunodeficiency virus (HIV-1), hepatitis B virus (HBV), and EBV with a varying degree of cytotoxicity.

Introduction

Nucleoside analogues are in the focus of current interest as antiviral and antitumor agents.¹ Structures which include analogues having carbohydrate (furanose) or various modifications thereof (e.g., cyclopentane and dioxa- and oxathiacyclopentane) exhibit diverse biological effects. The relevant examples are anti-AIDS drugs AZT (zidovudine, 1, Chart 1) or 3TC (lamivudine, 2). Removal of part or parts of nucleoside furanose moiety resulting in a substantial simplification of the structure led in many cases to new antiviral agents of significant therapeutic potency. Thus, acyclic nucleoside analogues acyclovir (3) and ganciclovir (4) are established antiherpetic drugs. 2',3'-Dideoxyribonucleosides (5) are potent anti-HIV agents. The tetrahydrofuran moiety of the latter analogues can be viewed as a relatively rigid "spacer"

between the groups important for antiviral activityheterocyclic base and the hydroxymethyl group.

Replacement of the tetrahydrofuran moiety with other rigid groups of similar size also provided new antiviral agents. Allene derivatives adenallene (6a) and cytallene (6b) are potent anti-HIV agents, $^{2-4}$ and the latter also inhibits replication of hepatitis B virus (HBV).⁵ More recently, we have described a new class of nucleoside analogues, (Z)- and (E)-methylenecyclopropanes 7 and 8. The purine derivatives of (Z)-isomers 7 were found to exhibit a particularly strong and broad-spectrum antiviral activity.⁶⁻⁸ By contrast, compounds with a transposed heterocyclic and hydroxymethyl moiety 9 and 10

10.1021/jo991030r CCC: \$19.00 © 2000 American Chemical Society Published on Web 02/08/2000

[†] Wayne State University School of Medicine.

[‡] Wayne State University

[§] Yale University School of Medicine.

[⊥] University of Michigan. [∥] The University of Alabama at Birmingham.

⁽¹⁾ Nucleosides and Nucleotides as Antitumor and Antiviral Agents; Chu, C. K., Baker, D. C., Eds.), Plenum Press: New York, 1993.

⁽²⁾ Phadtare, S.; Zemlicka, J. J. Am. Chem. Soc. 1989, 111, 5925-5931.

⁽³⁾ Zemlicka, J. In ref 1, pp 73–100.
(4) Zemlicka, J. Nucleosides Nucleotides 1997, 16, 1003–1012.

 ⁽⁵⁾ Zhu, Y.-L.; Pai, S. B.; Liu, S.-H.; Grove, K. L.; Jones, B. C. N.
 M.; Simons, C.; Zemlicka, J.; Cheng, Y.-C. Antimicrob. Agents Chemother. 1997, 41, 1755-1760.

 ⁽⁶⁾ Qiu, Y.-L.; Ksebati, M. B.; Ptak, R. G.; Fan, B. Y.; Breitenbach, J. M.; Lin, J.-S.; Cheng, Y.-C.; Kern, E. R.; Drach, J. C.; Zemlicka, J. J. Med. Chem. 1998, 41, 10–23.
 (7) Qiu, Y.-L.; Ptak, R. G.; Breitenbach, J. M.; Lin, J.-S.; Cheng, Y. C.; Kern, F. P. Drach, L. C.; Zemlicka, I. Antiviral Chem. Chemeth.

Y.-C.; Kern, E. R.; Drach, J. C.; Zemlicka, J. Antiviral Chem. Chemother. 1998, 9, 341-352.

12 - 15, series a: B = adenine, series b: B = guanine

were devoid of antiviral effect, but the (*E*)-isomer **10** was a substrate of moderate efficacy for adenosine deaminase.⁹ Interestingly, the spiro[3.3]heptane analogue of adenosine **11** displayed some potency against human cytomegalovirus (HCMV) in vitro, but it was resistant to adenosine deaminase.¹⁰ For a further investigation of structure–activity relationships in this series, spiro[2.2]pentanes **12–15** are considered crucial because their structures¹¹ are related to all aforementioned analogues **6–11**. They are derived by replacement of double bonds with a cyclopropane ring system in structures **6–10**, and also, they can be considered as ring-contracted mimics of spiro[3,3]heptane **11**.

Spiropentanes are currently not in the center of attention of synthetic organic chemistry.¹² Possible reasons for this neglect may include the fact that natural products comprising such a spirocyclic system have not been found. Nevertheless, biologically active agents based on a spiropentane structure have been reported. Thus, spiropentylacetic acid is capable of inhibiting acyl-CoA dehydrogenases.¹³ Very recently, it was shown that spiropentylacetyl-CoA is a mechanism-based inactivator of acyl-CoA dehydrogenases.¹⁴ Interestingly, these studies have also

Y.-C.; Drach, J. C.; Zemlicka, J. *J. Med. Chem.* **1998**, *41*, 5257–5264. (9) Qiu, Y.-L.; Ksebati, M. B.; Zemlicka, J. *Nucleosides Nucleotides* in press. indicated a biological relationship of spiropentane and methylenecyclopropane analogues. Nevertheless, it must be stressed that biological effects of stereochemically more complex 1,4(5)-disubstituted spiropentanes have not been described to the best of our knowledge.

A seminal publication of Gajewski and Burka¹¹ outlined the problems of stereoisomerism of 1,4(5)-disubstituted spiropentanes and also procedures for synthesis of these isomers. Their separation relied heavily on vaporphase chromatography, a method poorly suitable for obtaining starting materials for further syntheses. Later, a mixture of four stereoisomeric 1,2,4(5)-trisubstituted spiropentanes was obtained by reaction of methylcyclopropanediphenylsulfonium ylide with chalcone, and their isomeric structure was determined by ¹H NMR spectroscopy after derivatization with europium(III) shift reagent,¹⁵ but the isomers were not separated. More recently, a 2:1 mixture of 1-bromo-4(5)-ethoxycarbonylspiropentanes of an unspecified isomeric composition was prepared¹⁶ and used in a futile attempt to alkylate adenine. In this paper, we describe synthesis and biological investigation of two complete isomeric sets of spiropentane nucleoside analogues comprising adenine and guanine moieties, compounds 12a-15a and 12b-15b.

Synthesis

In the absence of stereoselective procedures¹⁷ for synthesis of distinct (*proximal, medial-syn, medial-anti*,

⁽⁸⁾ Qiu, Y.-L.; Hempel, A.; Camerman, N.; Camerman, A.; Geiser, F.; Ptak, R. G.; Breitenbach, J. M.; Kira, T.; Li, L.; Gullen, E.; Cheng, Y.-C.; Drach, J. C.; Zemlicka, J. *J. Med. Chem.* **1998**, *41*, 5257–5264.

⁽¹⁰⁾ Jones, B. C. N. M.; Drach, J. C.; Corbett, T. H.; Kessel, D.; Zemlicka, J. J. Org. Chem. **1995**, 60, 6277–6280.

⁽¹¹⁾ For the basis of this nomenclature see: Gajewski, J. J.; Burka, L. T. *J. Org. Chem.* **1970**, *35*, 2190–2196.

⁽¹²⁾ Lukin, K. A.; Zefirov, N. S. In *The Chemistry of the Cyclopropyl Group*; Rappoport, Z., Ed.; John Wiley & Sons: New York, 1995; Vol. 2, pp 861–885.

⁽¹³⁾ Tserng, K.-Y.; Jin, S.-J.; Hoppel, C. L. *Biochemistry* **1991**, *30*, 10755–10760.

⁽¹⁴⁾ Li, D.; Zhou, H.-q.; Dakoji, S.; Shin, I.; Oh, E.; Liu, H.-w. J. Am. Chem. Soc. 1998, 120, 2008–2017.

⁽¹⁵⁾ Trost, B. M.; Bogdanowicz, M. J. J. Am. Chem. Soc. **1973**, 95, 5307–5310.

⁽¹⁶⁾ Cheng, C.; Shimo, T.; Somekawa, K.; Kawaminami, M. Tetrahedron Lett. **1997**, 38, 9005–9008.

⁽¹⁷⁾ Previous work¹¹ indicated that addition of diazomethane to *syn*-2-ethylene-1-carbethoxycyclopropane catalyzed by CuSO₄ in pentane led to a mixture of *proximal* and *medial-anti* spiropentanes (2:1) whereas reaction with an *anti*- isomer afforded *medial-syn* and *distal* spiropentanes (2:1).

^{*a*} Conditions: (a) Zn, AcOH–Et₂O. (b) LiAlH₄, Et₂O. (c) Ac₂O, pyridine. (d) N₂CHCO₂Et, Rh₂(OAc)₄, CH₂Cl₂. (e) (1) NaOH, aqueous MeOH. (2) Separation of **21a** + **21b** and **21c** + **21d**. (3) c. (f) (PhO)₂P(O)N₃, NEt₃, tBuOH Δ . (g) (1) K₂CO₃, aqueous MeOH. (2) Separation of **24a**-**24d**. (h) HCl, MeOH. (i) (1) 4,6-Dichloro-5-nitropyrimidine, NEt₃, EtOH. (2) SnCl₂, CH(OEt)₃. (j) NH₃, MeOH, Δ .

or *distal*) isomers of 1,4(5)-disubstituted spiropentanes, a "combinatorial" approach seemed advantageous. Thus, synthesis of a mixture of common intermediates was contemplated from which all four possible isomers 12a-15a and 12b-15b needed for biological evaluation could be generated. Ethyl methylenecyclopropanecarboxylate (16), which was used previously for the synthesis of several 1,4-disubstituted spiropentanes,¹¹ was a convenient starting material (Scheme 1). Although other procedures for the preparation of 16 have been described,^{11,18} we have conveniently used zinc-catalyzed debromination of ethyl 2-bromo-2-bromomethylcyclopropane-1-carboxylate⁶ (17). Compound 16, obtained in 80% yield, was reduced with LiAlH₄ to give methylenecyclopropylmethanol (18, 85%). The latter was converted to acetate 19 (87.5%).

Reaction of compound **19** with ethyl diazoacetate catalyzed¹⁹ by $Rh_2(OAc)_4$ in CH_2Cl_2 gave a mixture of all four possible stereoisomeric spiropentanes **20a**–**20d**. The mixture was partially resolved by column chromatography on silica gel to give less polar *proximal* and *medial-syn* isomers **20a** + **20b** (46%) followed by more polar *medial-anti* and *distal* isomers **20c** + **20d** (38%).

The unresolved mixture of 20a-20d was hydrolyzed with NaOH in aqueous ethanol to give after chromatographic separation *proximal* and *medial-syn* isomers **21a** + **21b** and *medial-anti* and *distal* isomers **21c** + **21d** in 52% and 45% yields, respectively. Acetylation of **21a** + **21b** gave acetates **22a** + **22b** (96%), and **21c** + **21d** afforded **22c** + **22d** (97%). Thus, it was possible to resolve the original mixture into two pairs of isomers early in the synthetic sequence.

Isomers **22a** + **22b** were subjected to a Curtius rearrangement after activation with diphenylphosphoryl azide²⁰ and triethylamine in tert-butyl alcohol to give the BOC-aminospiropentanes **23a** + **23b** (78%). Compounds **23a** + **23b** were deacetylated using K₂CO₃ in aqueous methanol to give, after column chromatography on silica gel, *proximal* and *medial-syn* isomers **24a** and **24b** in 17% and 80% yields, respectively. Acetates **22c** + **22d**

were also transformed to a mixture of the BOC-amino derivatives, which were partially separated by chromatography to afford *medial-anti* and *distal* isomers **23c** and **23d** in a total yield of 76%. Deacetylation then furnished compounds **24c** and **24d**, which were readily resolved by chromatography in 43% and 53% yields, respectively. Removal of the BOC group from separated isomers **24a**– **24d** was accomplished with HCl in methanol to give the corresponding amine hydrochlorides **25a**–**25d** in quantitative yields.

The introduction of heterocyclic bases, adenine and guanine, into spiropentane systems of **25a**–**25d** was performed as follows. A new one-pot procedure led to a considerable simplification of the current methods.²¹ In the case of spiropentyladenines **12a**–**15a**, amines **25a**–**25d** were first alkylated with 4,6-dichloro-5-nitropyrimidine²² in the presence of triethylamine in ethanol at room

⁽¹⁸⁾ Lai, M.-t.; Liu, L.-d.; Liu, H.-w. J. Am. Chem. Soc. **1991**, 113, 7388–7397.

⁽¹⁹⁾ Doyle, M. P.; Tamblyn, W. H.; Bagheri, V. J. Org. Chem. **1981**, *46*, 5094–5102.

⁽²⁰⁾ Ninomiya, K.; Shioiri, T.; Yamada, S. Tetrahedron 1974, 30, 2151–2157.

⁽²¹⁾ Agrofoglio, L. A.; Challand, S. R. *Acyclic, Carbocyclic and L-Nucleosides*, Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp 182–183.

^a Conditions: (a) (1) 2-Acetamino-4,6-dichloro-5-nitropyrimidine, NEt₃, EtOH-DMF (1:1). (2) SnCl₂, CH(OEt)₃. (b) (1) 80% HCO₂H, Δ . (2) NH₃, MeOH.

temperature for 2 h. The solvents were then evaporated, and the crude product was treated with SnCl₂ and triethyl orthoformate for 16 h. Chromatography then furnished 6-chloropurine derivatives **26a–26d** in yields ranging from 45% to 57%. Ammonolysis with NH₃ in methanol (autoclave at 100 °C for 15 h) gave the desired adenine analogues 12a-15a in 75-91% yield.

It is interesting to note that alkylation of 25a-25d with 4,6-dichloro-5-aminopyrimidine, which is commonly used in nucleoside analogue synthesis²¹ and requires a higher temperature, led only to destruction of the spiropentane moiety. Further investigation indicated that free bases **25a–25d** have a limited stability. Thus, the free base of medial-syn isomer 25b was obtained in approximately 70-80% purity by TLC after treatment of the hydrochloride with 10% KOH in aqueous methanol and subsequent chromatography. It was completely decomposed after standing in CDCl3 overnight. Additional experiments performed with isomers 25a, 25c, and 25d in 10% KOH in D₂O indicated stability at room temperature (9 h), approximately 20-30% decomposition at 50 °C (16 h), and complete degradation at 80-90 °C (5 h). These results are in line with a previous report indicating a limited stability of aminospiropentane itself.²³ In this respect, aminospiropentanes resemble another class of strained amines, aminocubanes, which also lack a sufficient stability.²⁴ It is not clear whether this behavior may reflect a partial enamine (aldimine) character of such amines (see structures 27, 28, and 29 in Scheme 2).

A similar approach was employed for synthesis of spiropentylguanines 12b-15b. In this case, the alkylation of amines 25a-25d was performed with 2-acetamino-4,6-dichloro-5-nitropyrimidine^{25,26} (Scheme 3). The respective intermediates were then cyclized using the SnCl₂-triethyl orthoformate reagent as described above to give 2-acetamino-6-chloropurines 30a-30d in yields ranging from 41% to 58%. Hydrolysis and deacetylation were performed using 80% formic acid followed by

Figure 1. IR spectra (3000-4000 cm⁻¹ region) of stereoisomeric BOC derivatives 24a-24d in CCl₄.

treatment with NH₃/methanol to give guanine analogues 12b-15b in 75-85% yield.

NMR Spectra and Isomeric Assignment. Preliminary data revealed that the polarity of isomeric spiropentanes (mobility on TLC) followed the order proximal > *medial-syn* > *medial-anti* > *distal* irrespective of the 1,4(5)-substituents involved. In addition, IR spectra of 4-hydroxymethyl-1-BOC-amino derivatives 24a-24d (0.03-0.04 M in CCl₄) revealed a significant intramolecular hydrogen bonding in proximal and medial-syn isomers **24a** and **24b** (broad bands at 3300-3500 cm⁻¹), whereas these bands were absent in the medial-anti and distal isomers 24c and 24d (Figure 1). As expected, this absorption was especially strong in the *proximal* isomer 24a. Small peaks found in all these isomers at 3620-3640 cm⁻¹ can possibly be attributed to hydrogen bonding of OH to the "edge" of the adjacent cyclopropane ring.¹¹ It is worthwhile to note that O-H-O hydrogen bonding was observed in the proximal 1,4-bis(hydroxymethyl)spiropentane but not in the *medial* isomer.¹¹ However, in this case the hydrogen-bonded structure 31 comprised

⁽²²⁾ The use of 4,6-dichloro-5-nitropyrimidine for purine ring construction by a two-step procedure was reported: Coe, D. M.; Myers, P. L.; Parry, D. M.; Roberts, S. M.; Storer, R. J. Chem. Soc., Chem. Commun. 1990, 151-153.

⁽²³⁾ Konzelman, L. M.; Conley, R. T. J. Org. Chem. 1968, 33, 3828-3838

⁽²⁴⁾ Eaton, P. E.; Shankar, B. K. R.; Price, G. D.; Pluth, J. J.; Gilbert,

^[24] Eatoh, F. E., Shahkai, D. R. R., Filte, G. D., Fidth, S., Ghlef,
E. E.; Alster, J.; Sandus, O. J. Org. Chem. 1984, 49, 185–186.
(25) Norbeck, D. W.; Sham, H. L.; Herrin, T.; Rosenbrook, W.;
Plattner, J. J. J. Chem. Soc., Chem. Commun. 1992, 128–129.
(26) Temple, C., Jr.; Smith, B. H.; Montgomery, J. A. J. Org. Chem.

^{1975, 40, 3141- 3142.}

an eight-membered ring, whereas in the *proximal* and *medial-syn* isomers **24a** and **24b** (structures **32** and **33**)

nine-membered rings are involved. Although the IR spectra provided information for differentiation between proximal and medial-syn isomers 24a and 24b, additional data were necessary for confirmation and assignment of medial-anti and distal isomers 24c and 24d. This information has followed from the detailed NMR investigation of one set of the final products, spiropentyladenines 12a-15a. The cis and trans coupling constants of cyclopropane protons, $J_{2'(2''),1'}$ and $J_{4'(4''),5'}$, of analogues **12a–15a** and 12b-15b fall within the range of similar values found for simple cyclopropane systems²⁷ ($J_{cis} = 6-10$ Hz, typically 8 Hz; $J_{trans} = 3-6$ Hz, typically 5 Hz). Assignments of all protons were corroborated with the aid of NOE (Tables 1-4), DEPT, and (H,C) and (H,H) COSY NMR spectra. The H₂ and H₈ signals of analogues **12a**-**15a** were unresolved or very close ($\Delta \delta_{\text{max}} < 0.02$), and they resembled similar signals in adenallene² (6a). In the absence of significant chemical shift differences of the H₈ protons and in view of the fact that the $H_{6'}(H_{6''})$ signals were magnetically nonequivalent in all four isomers, a preliminary assignment of the isomeric structures successfully used in case of (Z)- and (E)-methylenecyclopropane analogues⁶ 7 and 8 could not be perfomed.

The NOE experiments were crucial for distinguishing all isomers. Thus, proximal isomer 12a showed NOE enhancement of the $H_8(H_2)$ signal of 1.7% and 2%, respectively, after irradiation of $H_{6'}$ and $H_{6''}$ (Table 1). Conversely, irradiation of H₈(H₂) led to 0.2% and 0.4% enhancement of $H_{6'}$ and $H_{6''}$. It is assumed that purine bases in all isomers are in an *anti*-like conformation,²⁸ with the C_8 facing $C_{5'}$ or $C_{4'}$, and the H_8 is then responsible for this effect.²⁹ Somewhat surprisingly, no NOE was seen between the $H_{6'}$, $H_{6''}$, or OH and $H_8(H_2)$ of 13a (Table 2), although an intramolecular hydrogen bonding was present in the corresponding precursor, compound 24b (Figure 1). According to expectation, in the medial-anti and distal isomeric pair 14a and 15a only the former exhibited an NOE enhancement of $H_8(H_2)$ after irradiation of $H_{6'}$ and $H_{6''}$ (Table 3, 1%). The NOE was also observed between protons located on the same face of the spiropentane system, $H_{4''}$ and $H_8(H_2)$ of the *medial-anti* isomer **14a** (5.2 and 0.8%) as well as $H_{4'}$ and $H_8(H_2)$ of the distal isomer **15a** (5.1 and 1%). Similar effects were absent in compounds 12a and 13a.

Table 1. NOE Enhancements of the proximal Isomer 12a

		obsd H (% NOE)								
irr (δ , H)	$H_{4^{\prime\prime}}$	$H_{4^{\prime}}$	$H_{2'}, H_{5'}$	$H_{2^{\prime\prime}}$	$H_{6^{\prime}}$	$H_{6^{\prime\prime}}$	$H_{1^{\prime}}$	H ₈ , H ₂	он	
0.90, H _{4"}		14.7			2.3	0.7	2.5		1.4	
1.00, H _{4'}	14.5		7.5							
1.48, 1.51, H _{2'} , H _{5'}		1.7		9.3		1.3	4.2		1.1	
2.01, H _{2"}			22.8					12.1		
2.82, H _{6'}	1.9		2.8			19	0.6	1.7	8.7	
2.95, H _{6"}			5.2		19.5			2	6.2	
4.01, $H_{1'}$	0.8		3.6					2.6		
4.35, OH										
8.11, H ₈ , H ₂				1.9	0.2	0.4	1.2		0.3	

 Table 2. NOE Enhancements of the medial-syn Isomer

 13a

	obsd H (% NOE)								
irr (δ , H)	$H_{4^{\prime\prime}}$	$H_{4^{\prime}}$	H _{2'} , H _{5'}	H _{2"}	$H_{6^{\prime}}$	$H_{6^{\prime\prime}}$	$H_{1^{\prime}}$	H ₈ , H ₂	OH
0.75, H _{4"}		20.4	1		1.9	1.2			
1.23, H _{4'}	19.5		2.5				2.2		
1.49, H _{2'} , H _{5'}		2.2		8.5	1.4	1	5.4	2.8	
1.65, H _{2"}			21					7.3	
3.20, H _{6'}	2.3		3	1.0		22.5			
3.50, H _{6"}	1		3.5		21				-17.5
3.86, H _{1'}		0.8	4.8					2.5	2
4.60, OH									
8.10, 8.12, H ₈ , H ₂			1.2	1.3					

 Table 3. NOE Enhancements of the medial-anti Isomer

 14a

	obsd H (% NOE)								
irr (δ, H)	H _{4"}	$H_{4^{\prime}}$	$H_{5^{\prime}}$	$H_{2^{\prime}}$	$H_{2^{\prime\prime}}$	$H_{6^\prime_{\cdot}}H_{6^{\prime\prime}}$	$H_{1^{\prime}}$	H ₈ , H ₂	OH
0.75, H _{4"}		20				3	0.6	5.2	
0.95, H _{4'}	21		6.5		0.7				
1.47, H _{5'}		3.6				3	1.4		1
1.55, H _{2'}					15.7		10.6		
1.69, H _{2"}		1		17.5			1	9.4	
3.67, 3.72, H _{6'} , H _{6"}	2 - 3		4.7				2	1	3
3.86, H _{1'}			0.8	3				2.8	
4.60, OH									
8.09, 8.10, H ₈ , H ₂	0.8				1.5		1.2		

Table 4.NOE Enhancements of the distal Isomer 15a

	obsd H (% NOE)								
irr (δ , H)	$H_{4^{\prime\prime}}$	$H_{4^{\prime}}$	$H_{2'}, H_{5'}$	$H_{2^{\prime\prime}}$	$H_{6^{\prime}}$	$H_{6^{\prime\prime}}$	$H_{1^{\prime}}$	H ₈ , H ₂	OH
0.66, H _{4"}		23		1	1.5	1.7			
1.10, H _{4'}	23		7					5.1	
1.54, H _{2"}	0.7		16					6.6	
1.64, H _{2'} , H _{5'}		2.1		8.1	1.2	1.3	6.9		0.7
3.32, H _{6'}	1.3		4.2			9.2			-24
3.44, H _{6"}	1		4.2		9				-24
3.74, H _{1′}			6					2.4	
4.57, OH									
8.09, 8.10, H ₈ , H ₂		1		1			1.5		

The NOE between $H_{1'}$ and $H_{4''}$ (0.8% and 2.5%, Table 1, $H_{1'}$ ··· $H_{4''} = 3.15$ Å) was characteristic of the *proximal* isomer **12a**, whereas no effect was seen between the $H_{1'}$ and $H_{4'}$ ($H_{1'}$ ···· $H_{4'}$ = 3.87 Å). As expected, this trend was reversed in medial-syn isomer 13a with the observed interaction between H_{1^\prime} and H_{4^\prime} (0.8% and 2.2%, Table 2, $H_{1'} \cdots H_{4'} = 3.14$ Å) and none between $H_{1'}$ and $H_{4''}$ ($H_{1'} \cdot$ $\cdot \cdot H_{4''} = 3.82$ Å). In medial-anti and distal isomers 14a and 15a the only $H_{1'}$ and $H_{4'}(H_{4''})$ interaction was noted in the former (0.6%, Tables 3 and 4). A strong NOE enhancement found between H₈ and H_{4"} of the medialanti isomer 14a and H_8 and $H_{4'}$ of the distal isomer 15a (5.2 and 5.1 Hz, respectively) is also characteristic. These effects were absent in the proximal and medial-syn isomers 12a and 13a. All these data established the isomeric structures of 12a-15a and the respective precursors 24a-24d.

⁽²⁷⁾ Friebolin, H. Basic One- and Two-Dimensional NMR Spectroscopy, VCH Publishers: New York, 1991; p 77.
(28) Saenger, W. Principles of Nucleic Acid Structure; Springer-

⁽²⁸⁾ Saenger, W. *Principles of Nucleic Acid Structure;* Springer-Verlag: New York, 1984; p 69.

⁽²⁹⁾ Difficulty in pinpointing the "right" signal (presumably H_8) from poorly resolved singlets of H_8 and H_2 may account for lower NOE effects.

Table 5. Antiviral Activity of Spiropentane Nucleoside Analogues^a

	HCMV ^b	HS	HSV-1		HSV-1		VZV	EBV	HIV-1	HBV
compd	HFF ^c	BSC-1 ^d	Vero ^c	Vero ^{c,e}	HFF ^{c,f}	Daudi ^g	CEM-SS ^{e,h}	$2.2.15^{e}$		
12a	28/>100	>100/>100	>50/89	>50	>86.5	$4.8/15(0.95)^{i}$	>100	>10		
13a	20/>100 ^j	70/>100	>50/>100	>50	245	$22/>202(0.61)^{i}$	>100	>10		
14a	>100/>100	>100/>100	>50/>100	>50	242	153/202	>100	>10		
15a	>100/>100	>100/>100	>50/>100	>50	>433	>216/>216	>100	>10		
12b	>100/>100	>100/>100	>50/>100	>50	$> 399^{k}$	>199/>199	>100	>10		
13b	>100/>100	>100/>100	>50/>100	>50	$> 399^{k}$	>199/>199	>100	>10		
14b	>100/>100	>50/>100	>100/>100	>50	$> 399^{k}$	>199/>199	>100	>10		
15b	>100/>100	>100/>100	>50/>100	>50	$> 399^{k}$	6.0/>199 (12) ⁱ	>100	>10		
34	0.38/100	7.0/70	20/27	31	$> 8.5(1.4)^k$	2.8/7.6	3.5	3.1		
control	2.9/>100 ¹	2.0/>100 ^m	$13.5/>200^{m}$	32.3^{m}	9.3/>444 ^m	$8.4/>222^{m}$	$0.5/>10^{n}$	$2.3/6^{o}$		

^{*a*} Inhibition of viral replication (EC₅₀, μ M) and cytotoxicity (IC₅₀, μ M) in the host cells. The data are listed as EC₅₀/IC₅₀. For a description of antiviral assays see refs 6 and 7. ^{*b*} Towne strain. ^{*c*} Plaque reduction assay. ^{*d*} Enzyme-linked immunosorbent assay (ELISA). The cytotoxicities were determined in KB cells. ^{*e*} The cytotoxicities were determined in CEM cells; see HSV-1/Vero. ^{*f*} For cytotoxicities in HFF cells see HCMV/HFF. ^{*g*} Viral capsid antigen (VCA) immunofluorescence (IF) or ELISA assay. ^{*h*} Supernatant reverse transcriptase assay. ^{*i*} Inhibition of EBV DNA synthesis. ^{*j*} EC₅₀/IC₅₀ 40/>404 in the AD 169 strain and 10.5/>404 in MCMV/MEF assay. ^{*k*} Cytopathic effect (CPE) inhibition assay. ^{*i*} Ganciclovir. ^{*m*} Acyclovir. ^{*n*} Zidovudine (AZT). ^{*o*} Zalcitabine (ddC).

Long-range coupling across the spiropentane ring system was observed in the (H,H) COSY NMR spectra of *medial-anti* and *distal* isomers **14a** and **15a**, but it was absent in *proximal* and *medial-syn* isomers **12a** and **13a**. It is especially extensive in *medial-anti* isomer **14a**, where all spiropentane protons with the exception of $H_{2''}$ are involved. A long-range interaction between $H_{1'}$ and $H_{6',6''}$ was also seen. By contrast, a similar coupling takes place only between the $H_{1'}$ and $H_{4''}$ of the *distal* isomer **15a**. It is recognized that the rigidity of a spiropentane system offers a good opportunity for this type of coupling, but the reasons for the observed isomer selectivity are not entirely clear.

Biological Activity

Among analogues 12a-15a and 12b-15b, adenine proximal and medial-syn isomers **12a** and **13a** as well as guanine distal isomer 15b exhibited antiviral activity in several assays (Table 5). Compounds 12a and 13a were moderately active against HCMV in human foreskin fibroblast (HFF) culture as determined by a plaque reduction assay (EC₅₀ 28 and 20 μ M, respectively). The medial-syn isomer 13a was also potent against murine cytomegalovirus (MCMV; EC₅₀ 10.5 µM) in mouse embryonic fibroblast (MEF) cells. Little or no cytotoxicity was observed. The proximal isomer 12a was the most effective against Epstein-Barr virus (EBV) in Daudi cells with EC₅₀ 4.8 μ M, but it was cytotoxic (IC₅₀ 15 μ M). The guanine *distal* isomer **15b** was virtually equipotent (EC₅₀ 6.0 μ M), but it was noncytotoxic (IC₅₀ > 199 μ M). Compound **13a** was less active (EC₅₀ 22 μ M), and it was also noncytotoxic (IC₅₀ > 202 μ M). Antiviral activity of medial syn and proximal isomers 13a and 12a is in line with the findings that antiviral activity of the cisoid analogues (e.g., 7) is usually superior to that of transoid analogues⁶ (e.g., 8), but the anti-EBV efficacy of the *distal* isomer 15b is an exception. A different activity trend was found in deamination of 12a-15a catalyzed by adenosine deaminase. Only medial-anti isomer 14a was a substrate, though with a very low reaction rate ($t_{1/2} > 120$ h). Analogues 12a, 13a, and 15a were not deaminated. In summary, biological activity was found among all four isomeric types, although the distances between the heterocyclic base (adenine) and hydroxymethyl group $(N^9 \cdots C_{6'})$ vary significantly between 3.54 (**12a**) and 5.01 (15a) Å. At this point, it is difficult to rationalize the antiviral results, but roughly, the trend follows that of methylenecyclopropane analogues: $^{6-8}$ little activity against HIV-1, herpes simplex virus type 1 (HSV-1), and HSV-2 and more potency against CMV and EBV.

Inactive nucleoside analogues including allenic^{30,31} and methylenecyclopropane derivatives³² can be activated by conversion to lipophilic pronucleotides, thus bypassing the first phosphorylation step in their mechanism of action.³³ Therefore, the *medial-syn* isomer **13a**, which exhibited the most potent anti-HCMV effect at noncytotoxic levels from all analogues investigated in the present study, was transformed to phenyl phosphoralaninate 34. Indeed, the activity of the latter prodrug against HCMV (EC₅₀ 0.38 μ M) was increased over 50-fold compared to that of **13a**, whereas the cytotoxicity remained low (IC₅₀) 100 μ M). There was a similar increase of activity against HBV (EC₅₀ 3.1 μ M) and HIV-1 (EC₅₀ 3.5 μ M). Antiviral activity was also seen against HSV-1 (EC₅₀ 7 μ M), and cytotoxicity in T-lymphoblastoid cell line CEM and epidermoid oral carcinoma KB cells was 27 and 70 μ M, respectively. Phosphoralaninate 34 was also active against EBV with EC₅₀ 2.8 μ M, albeit it was cytotoxic to uninfected cells with an IC₅₀ of 7.8 μ M. It was also effective against varicella zoster virus (VZV; EC₅₀ 1.4 μ M, IC₅₀ 95 μ M) in a cytopathic effect inhibition assay. Compound 34 is a substrate for pig liver esterase (PLE), a current model of intracellular esterases, ^{30,34} which also indicates that the mechanism of its antiviral activity may be related to that of similar prodrugs of nucleoside analogues.^{30,31,33} All these results indicated that (i) design of antiviral nucleoside analogues where the 2'-deoxyribofuranose moiety is replaced by a spiropentane system is possible and (ii) the biological activity of such analogues can be increased by conversion to lipophilic phosphates capable of generating the phosphorylated species inside the virus-infected cells. These results are also in agreement with a hypothesis that phosphorylation is indispensable for the mechanism of antiviral activity of 13a.

(33) Meier, C. Synlett 1998, 233-242.

(34) McGuigan, C.; Tsang, H.-W.; Sutton, P. W.; De Clercq, E.; Balzarini, J. *Antiviral Chem. Chemother.* **1998**, *9*, 109–115.

⁽³⁰⁾ Winter, H.; Maeda, Y.; Mitsuya, H.; Zemlicka, J. *J. Med. Chem.* **1996**, *39*, 3300–3306.

⁽³¹⁾ Winter, H.; Maeda, Y.; Uchida, H.; Mitsuya, H.; Zemlicka, J. J. Med. Chem. **1997**, 40, 2191–2195.

⁽³²⁾ Qiu, Y.-L.; Ptak, R. G.; Breitenbach, J. M.; Lin, J.-S.; Cheng, Y.-C.; Drach, J. C.; Kern, E. R.; Zemlicka, J. *Antiviral Res.* **1999**, *43*, 37–53.

Experimental Section

General Methods. See ref 6. TLC and column chromatography were performed as described previously.³⁵

Ethyl Methylenecyclopropanecarbonate (16). To a solution of ethyl 2-bromo-2-bromomethylcyclopropanecarbonate⁶ (**17**; 36.0 g, 0.126 mol) in ether (150 mL) and acetic acid (20 mL) was added zinc powder (40 g, 0.63 mol) in portions with stirring at room temperature. The stirring was continued for 16 h. The solids were filtered off and washed with ether (3×30 mL). The filtrate was washed successively with 5% HCl, water, aqueous NaHCO₃, and brine and dried (Na₂SO₄). Evaporation of the solvent at atmospheric pressure furnished the crude product, which was distilled to give compound **16**, bp 60 °C, 5 Torr (12.8 g, 80%). The ¹H NMR spectrum was identical to that reported.¹⁷

(Methylenecyclopropyl)methyl Acetate (19). A solution of compound 16 (30.0 g, 0.23 mol) in ether (40 mL) was added to a stirred mixture of LiAlH₄ (4.1 g, 0.12 mol) in ether (180 mL) at such a rate to maintain a gentle reflux. The resultant mixture was refluxed for 10 h. It was then quenched carefully with H₂O (8 mL) and 20% aqueous NaOH (16 mL). The ether phase was separated and the remaining white precipitate extracted with ether (5 \times 20 mL). The combined ether phase was distilled using a Vigreux column to give (methylenecyclopropane)methanol (18), bp 50-55 °C, 5 Torr (16.9 g, 85%). The ¹H NMR spectrum was identical to that described.¹⁷ To the solution of 18 (16.0 g, 0.2 mol) in pyridine (25 mL) was added acetic anhydride (25 mL) dropwise with stirring, which was continued at room temperature overnight. The reaction was quenched with water and the product extracted with pentane (4 \times 70 mL). The combined organic phase was washed successively with saturated CuSO₄, 5% HCl, aqueous NaHCO₃, and brine and dried (Na₂SO₄). Pentane was removed at atmospheric pressure using a Vigreux column, and the product 19 was distilled: bp 60-65 °C, 5 Torr (21.0 g, 87.5%); ¹Ĥ NMR $(CDCl_3) \delta 5.45$ (m, 1H) and 5.41 (m, 1H), 4.04 (dd, 1H, ${}^{3}J =$ 6.3 Hz, ${}^{2}J = 11.2$ Hz) and 3.86 (dd, 1H, ${}^{3}J = 8.1$ Hz, ${}^{2}J = 11.2$ Hz), 2.04 (s, 3H), 1.77 (m, 1H), 1.34 (tt, 1H, ${}^{2}J = {}^{3}J = 9.0$ Hz, ${}^{4}J = 2.2$ Hz) and 0.98 (m, 1H); ${}^{13}C$ NMR δ 171.06, 132.04, 104.78, 66.98, 20.94, 14.24, 8.67; EI-MS m/z125 (M - H, 17.0), 111 (M - CH₃, 7.3), 96 (M - CH₂O, 32.0), 84 (M - COCH₂, 100.0), 67 (M – CH₃CO₂, 59.1). Anal. Calcd for $C_7H_{10}O_2$: C, 66.67; H, 7.94. Found: C, 66.82; H, 8.18.

1-Carbethoxy-5-acetoxymethylspiropentanes 20a-20d. The method for preparation of dibromo derivative⁶ 17 was followed. Ethyl diazoacetate (90%, 10.0 mL, 85 mmol) in CH2- Cl_2 (10 mL) was added to a stirred mixture of $Rh_2(OAc)_4$ (200 mg, 0.45 mmol) and (methylenecyclopropyl)methyl acetate (19; 8.25 g, 65.4 mmol) in CH₂Cl₂ (20 mL) by a syringe pump over a period of 24 h. The reaction mixture was diluted with ethyl acetate (50 mL) and water (50 mL). The unsaturated byproducts (diethyl fumarate and maleate) were removed by a slow addition of solid KMnO₄ (8 g) with stirring. Solid NaHSO₃ was then added at 0-5 °C to remove excess KMnO₄; MnO₂ was filtered off and washed with ethyl acetate (5 \times 80 mL) using a sonicator. The combined organic phase was washed with aqueous NaHSO₃ and brine and dried (Na₂SO₄). Evaporation of solvent afforded the crude product as a mixture of diastereoisomers 20a-20d (11.5 g, 84%). Chromatography on a silica gel column in hexanes-ethyl acetate (30:1 \rightarrow 20:1) gave the faster moving fraction of proximal and medial-syn isomers 20a + 20b (6.1 g, 44%) followed by a slower moving fraction containing the *medial-anti* and $\tilde{d}istal$ isomers 20c + 20d (5.0 g, 36%).

Data for compounds 20a + **20b:** ¹H NMR (CDCl₃) δ 4.22– 3.63 (m, 4H), 2.0, 1.97 (2s, 3H, ratio 4:1), 1.89 (m, 1H), 1.7– 1.4 (m) and 1.2 (m), 0.98 and 0.78 (2m, ratio 1:4, total 8H); ¹³C NMR δ 173.06, 171.07, 170.90, 67.06, 66.15, 60.43, 60.21, 20.89, 22.34, 19.67, 19.34, 16.35, 15.59, 14.24, 14.11, 12.60, 12.53, 11.77, 10.31; EI-MS *m*/*z* 213 (M + H, 13.4), 169 (M – CH₃CO, 4.9), 153 (M – CH₃CO₂, 65.4), 139 (M – CO₂Et, 26.7), 125 (100.0); HRMS calcd for $C_9H_{12}O_2$ (M - CH_3CO_2H) 152.0837, found 152.0830. Anal. Calcd for $C_{11}H_{16}O_4$: C, 62.26; H, 7.55. Found: C, 62.03; H, 7.48.

Data for compounds 20c + 20d: ¹H NMR (CDCl₃) δ 4.09– 3.82 (m, 4H), 2.0, 1.97 (s, 3H), 1.90 (m, 1H), 1.17 (2t, 3H), 1.58– 1.28 (m), 1.06 (m), 0.85 (t) and 0.72 (t, ratio 2:1, total 5H); ¹³C NMR δ 173.52, 173.11, 170.92, 67.20, 67.03, 60.27, 22.71, 20.81, 19.72, 17.96, 16.70, 16.58, 14.21, 14.15, 12.52, 10.11, 10.02; EI-MS *m/z* 213 (M + H, 0.1), 169 (M – CH₃CO, 1.2), 152 (M – CH₃CO₂H 59.0), 139 (M – CO₂Et, 15.9), 79 (100.0); HRMS calcd for C₉H₁₂O₂ (M – CH₃CO₂H) 152.0837, found 152.0832. Anal. Calcd for C₁₁H₁₆O₄: C, 62.26; H, 7.55. Found: C, 62.10; H, 7.51.

1-Carboxy-5-hydroxymethylspiropentanes 21a-21d. A solution of 1-carbethoxy-4-acetoxymethylspiropentanes 20a-20d (5.36 g, 25.3 mmol) in ethanol-water (4:1, 100 mL) was added dropwise into 50% aqueous NaOH (10 mL) with stirring and ice-cooling. The stirring was continued for 16 h at room temperature. The volume of the mixture was reduced by evaporation in vacuo, and the pH was adjusted to 3 with 4 M HCl. The remaining solvent was evaporated, and the solid residue was extracted with CH_2Cl_2 -MeOH (10:1, 4 × 30 mL). Evaporation of the extract gave a product which showed three spots on TLC (CH₂Cl₂-MeOH, 6:1), **21a** (*R*_f0.65), **21b** (*R*_f0.62), partly overlapped and clearly separated from 21c + 21d (R_f 0.45). Column chromatography on silica gel in CH₂Cl₂-MeOH (10:1) afforded partially separated isomers **21a** + **21b** (1.88 g, 52.3%) and unseparated compounds **21c** + **21d** (1.61 g, 44.8%) as syrups.

Data for *proximal*-1-carboxy-5-hydroxymethylspiropentane (21a): ¹H NMR (D₂O) δ 3.73 (dd, 1H, ³*J* = 5.4 Hz, ²*J* = 11.0 Hz) and 3.06 (t, 1H, ²*J* = ³*J* = 11.0 Hz), 1.93 (m, 1H), 1.59 (m, 1H), 1.38 (m, 2H), 0.98 (t, *J* = 6.1 Hz) and 0.75 (1H, m, 2H).

Data for *medial-syn***-1-carboxy-5-hydroxymethylspiropentane (21b).** ¹H NMR (D₂O) δ 3.56 (dd, 1H, ³*J* = 6.0 Hz, ²*J* = 11.4 Hz) and 3.06 (dd, 1H, ³*J* = 8.0 Hz, ²*J* = 11.4 Hz), 1.88 (dd, 1H, ³*J*_{trans} = 3.5 Hz, ³*J*_{cis} = 5.0 Hz), 1.20 (m, 3H), 1.01 (dd, 1H, ²*J* = 4.0 Hz, ³*J*_{cis} = 6.5 Hz) and 0.70 (t, 1H, ²*J* = ³*J*_{trans} = 4.0 Hz); ¹³C NMR δ 174.82, 64.06, 22.54, 19.71, 19.40, 12.44, 11.73; EI-MS *m*/*z* 143 (M + H, 1.7), 125 (M - OH, 4.1), 43 (100.0); HRMS calcd for C₉H₁₂O₂ (M + H) 143.0708, found 143.0707.

Data for *medial-anti-* and *distal-***1-carboxy-5-hydroxymethylspiropentane (21c** + **21d):** ¹H NMR (D₂O) δ 3.34 and 3.24 (m, 2H), 1.88 and 1.74 (2m, 1H), 1.34 (2m, 2H), 1.24 and 1.15 (2m, 2H), 0.98, 0.86, 0.70 and 0.67 (4m, 2H); ¹³C NMR δ 175.45, 175.06, 64.13, 64.86, 23.27, 22.87, 20.83, 20.24, 17.82, 14.16, 12.47, 9.76; EI-MS *m/z* 143 (M + H, 6.4), 125 (M - OH, 30.9), 107 (13.6), 97 (47.7), 79 (92.3), 39 (100.0); HRMS calcd for C₉H₁₂O₂ (M + H) 143.0708, found 143.0705.

1-Carboxy-5-acetoxymethylspiropentanes 22a–22d. Each of the mixtures of isomers **21a** + **21b** (1.88 g, 13.2 mmol) and **21c** + **21d** (1.61 g, 11.3 mmol) was dissolved in acetic anhydride–pyridine (1:2, 12 mL), and the solution was allowed to stand at room temperature for 16 h. The volatile components were evaporated, and the residue was dissolved in water (10 mL) and lyophilized. The crude product was chromatographed on a silica gel column in CH_2Cl_2 –MeOH–AcOH (100:2:0.3) to give 1-carboxy-4-acetoxymethylspiropentanes **22a** + **22b** (2.34 g, 96%) and **22c** + **22d** (2.02 g, 97%), respectively, as syrups.

Data for *proximal-* and *medial-syn-*1-carboxy-5-acetoxymethylspiropentane (22a + 22b, Ratio 1:4): ¹H NMR (CDCl₃) δ 3.98 (dd, 1H, ³J = 7.2 Hz, ²J = 11.5 Hz) and 3.72 (dd, 1H, ³J = 7.0 Hz, ²J = 11.5), 1.92 (3H, s), 1.85 (dd, 1H, ³ J_{trans} = 4.1 Hz, ³ J_{cis} = 7.5 Hz), 1.65 and 1.53 (m, 1H), 1.44 (t, 1H, ²J = ³ J_{trans} = 3.5 Hz) and 1.28 (dd, 1H, ²J = 4.0 Hz, ³ J_{cis} = 7.4 Hz, ratio 1:4), 1.12 (dd, 1H, ²J = 4.8 Hz, ³ J_{cis} = 8.0 Hz) and 0.95, 0.77 (t, 1H, ²J = ³ J_{trans} = 4.8 Hz); ¹³C NMR δ 179.67, 171.24, 66.84, 66.03, 23.25, 23.02, 20.72, 19.53, 19.21, 16.37, 15.73, 15.04, 13.49, 11.66.

Data for *medial-anti-* and *distal-*1-carboxy-5-acetoxymethylspiropentane (22c + 22d, Ratio 1:1.2): ¹H NMR (CDCl₃) δ 3.98 (m, 1H) and 3.80 (2dd, overlaped, 1H, J = 7.4,

⁽³⁵⁾ Ben Cheikh, A.; Craine, L. E.; Recher, S. G.; Zemlicka, J. J. Org. Chem. 1988, 53, 929–936.

11.0 Hz and 7.2, 10.3 Hz), 1.91 (s, 3H), 1.88 (m, 1H), 1.59–1.29 (m), 1.09 (m) and 0.81–0.74 (2t, total 5H). 13 C NMR δ 179. 93, 179.14, 171.27, 66.05, 23.62, 23.13, 20.71, 19.58, 17.85, 16.78, 16.65, 14.84, 13.30, 10.12.

proximal- and **medial-syn-5-Acetoxymethyl-1-(***tert***-bu-toxycarbonylamino)spiropentanes (23a and 23b).** Diphenylphosphoryl azide (0.964 mL, 4.5 mmol) was added dropwise with stirring into the solution of compounds **22a** + **22b** (550 mg, 3.0 mmol) in *tert*-butyl alcohol (10 mL) containing Et₃N (0.753 mL, 5.4 mmol). The resulting mixture was refluxed for 4 h. After evaporation of *tert*-butyl alcohol, the residue was dissolved in ethyl acetate (100 mL). The resulting solution was washed with aqueous NH₄Cl and brine, dried (Na₂SO₄), and evaporated. The crude product was chromatographed on a silica gel column in hexanes-ethyl acetate (9:1 \rightarrow 8:1) to give a mixture of spiropentanes **23a** and **23b** (598 mg, 78%). Partial separation of isomers was achieved in hexanes-ethyl acetate (10:1), and uniform isomers **23a** and **23b** were used for characterization.

Data for *proximal* isomer 23a: ¹H NMR (CDCl₃) δ 5.21 (br s, 1H), 4.60 (dd, 1H, ${}^{3}J = 5.7$ Hz, ${}^{2}J = 11.7$ Hz) and 3.60 (dd, 1H, ${}^{3}J = 9.0$ Hz, ${}^{2}J = 11.4$ Hz,), 3.08 (br s, 1H), 2.07 (s, 3H), 1.66 (1H, m), 1.43 (s, 9H), 1.18 (t, 1H, ${}^{2}J = {}^{3}J_{trans} = 5.5$ Hz) and 1.04 (dd, 1H, ${}^{2}J = 4.5$ Hz, ${}^{3}J_{cis} = 7.5$ Hz), 0.86 (t, 1H, ${}^{2}J = {}^{3}J = 4.2$ Hz) and 0.80 (t, 1H, ${}^{2}J = {}^{3}J = 4.2$ Hz); ${}^{13}C$ NMR δ 171.32, 156.37, 79.28, 67.82, 20.98, 28.88, 28.32, 18.76, 16.10, 14.67, 11.55; CI-MS *m*/*z* 256 (M + H, 2.2), 200 (M + H - 2-methylpropene, 100.0); HRMS calcd for C₉H₁₃NO₄ (M + H - tBu) 199.0845, found 199.0840. Anal. Calcd for C₁₃H₂₁O₄N: C, 61.16; H, 8.29; N, 5.49. Found: C, 61.33; H, 8.30; N, 5.35.

Data for *medial-syn* **isomer 23b**: ¹H NMR (CDCl₃) δ 4.94 (br s, 1H), 3.88 (d, 2H), 2.76 (br s, 1H), 1.94 (s, 3H), 1.46 (m, 1H), 1.34 (s, 9H), 1.08 (m, 1H) and 1.00 (t, 1H, ${}^{2}J = {}^{3}J = 4.5$ Hz, H₂), 0.75 (t, 1H, ${}^{2}J = {}^{3}J = 4.2$ Hz) and 0.66 (t, 1H, ${}^{2}J = {}^{3}J = 4.2$ Hz); 13 C NMR δ 170.94, 156.36, 79.09, 67.64, 20.78, 28.16, 27.94, 19.88, 13.64, 11.81, 11.48; CI-MS *m*/*z* 256 (M + H, 6.5), 200 (M + H - 2-methylpropene, 100.0); HRMS calcd for C₉H₁₃NO₄ (M + H - tBu) 199.0845, found 199.0847. Anal. Calcd for C₁₃H₂₁NO₄: C, 61.16; H, 8.29; N, 5.49. Found: C, 61.18; H, 8.18; N, 5.69.

medial-anti- and *distal-5-*Acetoxymethyl-1-(*tert*-butoxycarbonyl)aminospiropentanes (23c and 23d). Both isomers were prepared as described above for spiropentanes 23a and 23b from a mixture of *medial-anti* and *distal-*1carboxy-4-acetoxymethylspiropentanes (22c + 22d; 550 mg, 3.0 mmol). Chromatography in petroleum ether—ethyl acetate (8:1 \rightarrow 7:1) afforded partially separated spiropentanes 23c and 23d (586 mg, 76%). Uniform isomers 23c and 23d were used for characterization.

Data for *medial-anti* isomer 23c: ¹H NMR (CDCl₃) δ 4.85 (br s, 1H), 4.15 (br s, 1H) and 4.00 (dd, 1H, J = 7.3 and 11.3 Hz), 2.91 (br s, 1H), 2.00 (s, 3H), 1.51 (t, 1H, J = 6.0 Hz), 1.40 (s, 9H), 1.17 (t, 1H, J = 6.0 Hz) and 1.00 (dd, 1H, ${}^{2}J = 4.5$ Hz, ${}^{3}J_{cls} = 7.5$ Hz), 0.83 (t, 1H, J = 4.2 Hz) and 0.78 (t, 1H, J = 4.6 Hz); 13 C NMR δ 171.12, 156.31, 79.26, 67.39, 28.27, 26.94, 20.94, 20.45, 17.11, 13.56, 8.67; CI-MS *m*/*z* 256 (M + H, 44.2), 200 (100.0); HRMS calcd for C₉H₁₃NO₄ (M + H - tBu) 199.0845, found 199.0848. Anal. Calcd for C₁₃H₂₁NO₄: C, 61.16; H, 8.29; N, 5.49. Found: C, 61.03; H, 8.25; N, 5.43.

Data for *distal* **isomer 23d:** ¹H NMR (CDCl₃) δ 4.76 (br, 1H), 4.00 (dd, 1H, J = 7.0 and 11.4 Hz) and 3.90 (dd, 1H, J = 7.3 and 11.4 Hz), 2.86 (br s, 1H, H₁), 2.02 (s, 3H), 1.60 (m, 1H, H₅), 1.39 (s, 9H), 1.19 (t, 1H, ²J = 5.0 Hz) and 1.12 (dd, 1H, ²J = 4.5 Hz, ³ $J_{cis} = 7.9$ Hz), 0.78 (t, 1H, J = 4.2 Hz) and 0.70 (t, 1H, J = 4.5 Hz); ¹³C NMR δ 171.11, 156.18, 79.41, 67.26, 28.26, 20.92, 20.00, 16.53, 11.79, 8.68; CI-MS *m*/*z* 256 (M + H, 2.9), 200 (80.0), 156 (9.3), 140 (100.0), 96 (80.4); HRMS calcd for C₉H₁₃NO₄ (M + H - tBu) 199.0845, found 199.0840. Anal. Calcd for C₁₃H₂₁NO₄: C, 61.16; H, 8.29; N, 5.49. Found: C, 60.93; H, 8.24; N, 5.48.

proximal- and medial-syn-5-Hydroxymethyl-1-(tertbutoxycarbonyl)aminospiropentanes (24a and 24b). A mixture of isomers 23a and 23b (1.42 g, 5.57 mmol) and K₂- CO_3 (845 mg, 6.13 mmol) in MeOH-H₂O (5:1, 30 mL) was stirred at room temperature for 16 h. Solvents were evaporated, and the residue was extracted with ethyl acetate (4 \times 30 mL). Evaporation afforded spiropentanes **24a** + **24b**, which were readily separated by TLC (hexanes–ethyl acetate, 2:1, R_f 0.6 and 0.3, respectively). Column chromatography on silica gel in hexanes–ethyl acetate (6:1 \rightarrow 4:1) gave the *proximal* isomer **24a** (200 mg, 17%) and *medial-syn* isomer **24b** (950 mg, 80%).

Data for *proximal* **isomer 24a:** IR (0.044 M solution in CCl₄) 3620, 3460 (sh) and 3360 (br, OH and NH), 2980 (C– H), 1710 and 1690 (C=O), 1545 (NH, amide II) cm⁻¹; ¹H NMR (CDCl₃) δ 6.33 (br s, 1H), 4.11 (dd, 1H, ${}^{3}J$ = 4.2 Hz, ${}^{2}J$ = 11.0 Hz) and 3.81 (br s, 1H), 3.09 (t, 1H, ${}^{3}J_{cis}$ = ${}^{3}J_{trans}$ = 8.8 Hz), 2.94 (br s, 1H), 1.56 (m 1H), 1.36 (s, 9H), 1.10 (m, 1H) and 0.87 (dd, 1H, ${}^{3}J_{cis}$ = 8.8 Hz, ${}^{2}J$ = 4.5 Hz), 0.77 (t, 1H, ${}^{2}J$ = ${}^{3}J$ = 3.9 Hz) and 0.68 (m, 1H); ${}^{13}C$ NMR δ 157.39, 79.13, 64.81, 28.90, 28.34, 19.14, 18.28, 15.25, 10.77; CI-MS *m*/*z* 214 (M + H, 18.5), 180 (2.2), 158 (M + H - 2-methylpropene, 100.0); HRMS calcd for C₇H₁₁NO₃ (M + H - tBu) 157.0740, found 157.0740.

Data for *medial-syn* **isomer 24b**: IR (0.046 M solution in CCl₄) 3620, 3450 and 3450–3400 (br, OH and NH), 2980 (C– H), 1720 and 1700 (sh, C=O), 1545 (NH, amide II) cm⁻¹; ¹H NMR (CDCl₃) δ 5.48 (br s, 1H), 3.86 (br s, 1H), 3.56 (dd, 1H, ${}^{3}J$ = 6.0 Hz, ${}^{2}J$ = 10.5 Hz) and 3.30 (dd, 1H, ${}^{3}J$ = 7.5 Hz, ${}^{2}J$ = 10.5 Hz), 2.84 (m, 1H), 1.36 (m, 1H), 1.32 (s, 9H), 0.95 (t, 2H, J= 5.7 Hz), 0.81 (t, 1H, J= 4.2 Hz) and 0.54 (t, 1H, J= 4.5 Hz); ${}^{13}C$ NMR δ 156.78, 79.05, 65.38, 28.53, 28.30, 19.38, 18.99, 16.96, 11.11; CI-MS *m*/*z* 214 (M + H, 4.9), 158 (M + H – 2-methylpropene, 100.0); HRMS calcd for C₇H₁₁NO₃ (M + H – tBu) 157.0740, found 157.0741.

medial-anti- and *distal-5-Hydroxymethyl-1-(tert-butoxycarbonyl)aminospiropentanes (24c and 24d).* Hydrolysis of the isomeric mixture **23c** + **23d** (925 mg, 3.6 mmol) was performed according to the procedure described above for **23a** + **23b**. Isomers **24c** and **24d** were resolved by TLC (petroleum ether—ether, 1:1), R_f 0.6 and 0.52, respectively. Column chromatography on silica gel in petroleum ether (5:1 \rightarrow 4:1) gave *medial-anti* isomer **24c** (334 mg, 43%) and *distal* isomer **24d** (413 mg, 53%).

Data for *medial-anti* isomer 24c: IR (0.034 M solution in CCl₄): 3630, 3460 (OH and NH), 2990 (C–H), 1730 (C=O), 1550 (NH, amide II) cm⁻¹; ¹H NMR (CDCl₃) δ 4.91 (br s, 1H), 3.79 (br s, 2H, H₆), 2.92 (br s, 1H), 2.75 (br s, 1H), 1.43 (s, 10H), 1.10 (t, 1H, J = 5.4 Hz) and 0.99 (br s, 1H), 0.94 (m, 1H) and 0.86 (br s, 1H); ¹³C NMR δ 157.24, 79.74, 62.16, 28.24, 26.75, 20.16, 19.23, 12.93, 6.70; CI-MS *m*/*z* 214 (M + H, 15.1), 158 (100.0); HRMS calcd for C₇H₁₁NO₃ (M + H – tBu) 157.0740, found 157.0734.

Data for *distal* **isomer 24d:** IR (0.031 M solution in CCl₄): 3640, 3460 (OH and NH), 2990 (C–H), 1730 (sh), 1710 (C=O), 1545 (NH, amide II) cm⁻¹; ¹H NMR (CDCl₃) δ 4.95 (br s, 1H,), 3.44 and 3.41 (2m, 2H), 3.16 (br s, 1H), 2.78 (br s, 1H), 1.46 (br s, 1H), 1.32 (s, 9H), 1.15 (t, 1H, ²*J* = ³*J*_{trans} = 6.0 Hz) and 0.96 (dd, 1H, ²*J* = 5.0 Hz, ³*J*_{cis} = 7.8 Hz), 0.68 (t, 1H, *J* = 4.2 Hz) and 0.55 (t, 1H, *J* = 4.5 Hz); ¹³C NMR δ 156.62, 79.32, 65.00, 28.48, 28.23, 19.77, 14.06, 11.70, 8.09; CI-MS *m*/*z* 214 (M + H, 31.0), 158 (100.0); HRMS calcd for C₇H₁₁NO₃ (M + H – tBu) 157.0740, found 157.0740.

1-Amino-5-hydroxymethylspiropentane Hydrochlorides 25a–25d. A solution of a single isomer of BOCaminospiropentane **24a**, **24b**, **24c**, or **24d** (1–2 mmol) was stirred in 2 M HCl in MeOH (10–20 mL) at room temperature for 16 h, whereupon it was evaporated to give 1-amino-4hydroxymethylspiropentane hydrochloride **25a**, **25b**, **25c**, or **25d** in quantitative yield.

Data for *proximal* isomer 25a: ¹H NMR (D₂O) δ 3.59 (dd, 1H, ³J = 7.4 Hz, ²J = 11.0 Hz) and 3.53 (dd, 1H, ³J = 7.0 Hz, ²J = 11.0 Hz), 2.94 (m, 1H), 1.68 (m, 1H), 1.24 (t, 1H, J = 6.6 Hz) and 1.13 (m, 1H), 1.03 (dd, 1H, ²J = 4.5 Hz, ³J = 7.6 Hz) and 0.83 (t, 1H, J = 4.5 Hz); ¹³C NMR δ 63.75, 28.14, 19.37, 17.00, 10.94, 10.14; EI-MS *m*/*z* 114 (M - Cl, 29.6), 55 (100.0); HRMS calcd for C₆H₈N (M - H - H₂O - HCl) 94.0657, found 94.0654.

Data for *medial-syn* **isomer 25b:** ¹H NMR (D₂O) δ 3.51 (dd, 1H, ³J = 6.7 Hz, ²J = 11.0 Hz), 3.38 (dd, 1H, ³J = 7.2 Hz,

 ${}^{2}J = 11.0$ Hz), 2.83 (dd, 1H, ${}^{3}J_{trans} = 3.3$ Hz, ${}^{3}J_{cis} = 6.6$ Hz), 1.54 (m, 1H), 1.17 (t, 1H, J = 6.4 Hz), 1.09 (m, 2H) and 0.69 (t, 1H, J = 4.2 Hz); 13 C NMR δ 64.19, 27.49, 16.91, 16.49, 10.42, 8.14; EI-MS m/z 114 (M - Cl, 4.9), 55 (100.0); HRMS calcd for C₆H₈N (M - H - H₂O - HCl) 94.0657, found 94.0655. Anal. Calcd for C₆H₁₂ClNO: C, 48.16; H, 8.03; N, 9.36. Found: C, 47.93; H, 7.97; N, 9.16.

Data for *medial-anti* isomer 25c: ¹H NMR (D₂O) δ 3.50 (2H, dd, J = 3.6 and 9.6 Hz), 2.98 (1H, d, J = 4.2 Hz), 1.56 (m, 1H), 1.32 (1H, t, J = 6.7 Hz), 1.16 (2H, m), and 0.83 (1H, t, J = 4.2 Hz); ¹³C NMR δ 64.24, 26.29, 19.46, 17.27, 10.04, 8.22; EI-MS *m*/*z* 114 (M - Cl, 14.1), 55 (100.0); HRMS calcd for C₆H₁₂NO (M - Cl) 114.0919, found 114.0918.

Data for *distal* **isomer 25d:** ¹H NMR (D₂O) δ 3.45 (2H, m), 2.86 (1H, dd, ³J_{trans} = 2.5 Hz, ³J_{cis} = 6.7), 1.56 (m, 1H), 1.32 (1H, t, ²J = ³J_{trans} = 6.5 Hz) and 1.13 (1H, dd, ²J = 4.8 Hz, ³J_{trans} = 8.4 Hz), 1.07 (1H, dd, ²J = 3.3 Hz, ³J_{cis} = 6.3 Hz) and 0.79 (1H, t, J = 4.8 Hz); ¹³C NMR δ 63.84, 27.51, 18.84, 17.03, 8.15, 7.94; EI-MS *m*/*z* 114 (M - Cl, 3.4), 55 (100.0); HRMS calcd for C₆H₁₂NO (M - Cl) 114.0919, found 114.0916; HRMS calcd for C₆H₈N (M - H - H₂O - HCl) 94.0657, found 94.0659.

6-Chloro-9-(5-hydroxymethylspiropent-1-yl)purines 26a – **26d.** A mixture of aminospiropentane **25a**, **25b**, **25c**, or **25d**, 4,6-dichloro-5-nitropyrimidine (1.2 molar equiv), and Et₃N (2.5 molar equiv) in ethanol was stirred at room temperature for 2 h. The solvents were evaporated, and a solid residue was stirred with an excess of triethyl orthoformate and SnCl₂·H₂O (6.0 molar equiv) at room temperature for 16 h. After evaporation of solvents, water (20 mL) was added, and the pH was adjusted to 8.0 with saturated aqueous K₂CO₃. The solution was evaporated, the residue was washed with CH₂Cl₂–MeOH (10:1, 5 × 30 mL), and evaporation of the solvents gave the crude product, which was purified by column chromatography on silica gel to furnish compound **26a**, **26b**, **26c**, or **26d**).

Data for *proximal* **isomer 26a**: yield 156 mg (47%) from **25a** (198 mg, 1.28 mmol), 4,6-dichloro-5-nitropyrimidine (312 mg, 1.60 mmol), Et₃N (0.465 mL, 3.3 mmol), EtOH (10.0 mL), CH(OEt)₃ (15 mL), and SnCl₂·H₂O (1.82 g, 8.0 mmol); solvent for chromatography CH₂Cl₂-MeOH (40:1 → 30:1); UV max (EtOH) 265, 217 nm; ¹H NMR (CDCl₃) δ 8.59 and 8.22 (2H, 2s), 4.07 (1H, dd, ${}^{3}J_{trans}$ = 3.3 Hz, ${}^{3}J_{cis}$ = 7.2 Hz), 3.52 (1H, dd, ${}^{3}J$ = 5.0 Hz, ${}^{2}J$ = 11.0 Hz) and 3.17 (1H, dd, ${}^{3}J$ = 7.0 Hz, ${}^{2}J$ = 11.0 Hz), 3.37 (1H, br s), 1.79 (1H, dd, ${}^{J}J$ = 3.8 and 6.0 Hz), 1.63 (2H, m), 1.06 (2H, m); ${}^{13}C$ NMR δ 153.00, 151.40, 150.40, 144.91, 131.63, 62.27, 32.70, 20.47, 19.79, 12.13, 10.40; EI-MS *m*/*z* 253 (4.8) and 251 (M + H, 19.0), 252 (2.9) and 250 (M, 4.6), 235 (17.5) and 233 (M - OH, 58.2), 221 (70.5) and 219 (M - CH₂OH, 100.0); HRMS calcd for C₁₁H₁₁³⁵ClN₄O 250.0621, found 250.0620.

Data for medial-syn isomer 26b: yield 181 mg (56%) from 25b (190 mg, 1.28 mmol), 4,6-dichloro-5-nitropyrimidine (300 mg, 1.54 mmol), Et₃N (0.446 mL, 3.2 mmol), EtOH (10.0 mL), CH(OEt)₃ (15 mL), and SnCl₂·H₂O (1.75 g, 7.68 mmol); solvent for chromatography CH₂Cl₂–MeOH (30:1 \rightarrow 25:1); UV max (EtOH) 265 (ϵ 10 800), 215 (ϵ 16 500) nm; ¹H NMR (CDCl₃) δ 8.58 and 8.41 (2H, 2s), 4.07 (1H, dd, ${}^{3}J_{trans} = 3.5$ Hz, ${}^{3}J_{cis} =$ 7.0 Hz), 3.94 (1H, dd, ${}^{3}J = 5.1$ Hz, ${}^{2}J = 10.2$ Hz) and 3.27 (1H, dd, J = 9.0 Hz, J = 10.8 Hz), 2.80 (1H, br s, OH), 1.73 (1H, dd, J = 3.5 and 5.6 Hz), 1.60 (1H, t, J = 6.5 Hz) and 1.58 (3H, m), 1.33 (1H, dd, ${}^{2}J$ = 4.8 Hz, ${}^{3}J_{cis}$ = 8.4 Hz) and 0.85 (1H, t, $^{2}J = {}^{3}J_{trans} = 4.8$ Hz); 13 C NMR δ 152.50, 151.64, 150.45, 144.44, 131.21, 65.06, 32.13, 20.29, 18.85, 11.93, 11.52; EI-MS m/z 253 (5.2) and 251 (M + H, 20.2), 252 (3.0) and 250 (M, 4.8), 235 (18.4) and 233 (M - OH, 42.8), 221 (64.1) and 219 (M - CH₂OH, 100.0); HRMS calcd for C₁₁H₁₁³⁵ClN₄O 250.0621, found 250.0618.

Data for *medial-anti* isomer 26c: yield 203 mg (45%) from 25c (270 mg, 1.82 mmol), 4,6-dichloro-5-nitropyrimidine (423 mg, 2.18 mmol), Et₃N (0.634 mL, 4.55 mmol), EtOH (16.0 mL), CH(OEt)₃ (25 mL), and SnCl₂·H₂O (2.46 g, 6.0 mmol); solvent for chromatography CH₂Cl₂-MeOH (25:1 \rightarrow 20:1); UV max (EtOH) 265, 217 nm; ¹H NMR (CDCl₃) δ 8.60 and 8.21 (2H, 2s), 3.98 (1H, dd, ³J = 5.0 Hz, ²J = 11.3 Hz) and 3.90 (3H, m), 1.69 (1H, t, J = 6.4 Hz), 1.61 (1H, dd, J = 3.3 and 5.7

Hz) and 1.59 (1H, m), 1.00 (1H, dd, ${}^{2}J = 4.8$ Hz, ${}^{3}J_{cis} = 8.1$ Hz) and 0.90 (1H, t, ${}^{2}J = {}^{3}J_{trans} = 4.9$ Hz); 13 C NMR δ 152.70, 151.63, 150.79, 145.55, 131.80, 62.68, 30.03, 20.51, 19.74, 12.63, 8.66; EI-MS *m*/*z* 253 (6.8) and 251 (M + H, 24.5), 252 (4.4) and 250 (M, 5.0), 235 (17.8) and 233 (M - OH, 50.3), 221 (76.0) and 219 (M - CH₂OH, 100.0), 206 (18.7), 181 (25.2), 155 (97.0); HRMS calcd C₁₁H₁₁³⁵ClN₄O 250.0621, found 250.0624.

Data for distal isomer 26d: yield 291 mg (57%) from 25d (300 mg, 2.03 mmol), 4,6-dichloro-5-nitropyrimidine (472 mg, 2.43 mmol), Et₃N (0.707 mL, 5.07 mmol), EtOH (16.0 mL), CH-(OEt)₃ (25 mL), and SnCl₂·H₂O (2.75 g, 12.2 mmol); solvent for chromatography CH₂Cl₂–MeOH ($25:1 \rightarrow 20:1$); UV max (EtOH) 265, 215 nm; ¹H NMR (CDCl₃) δ 8.61 and 8.20 (2H, 2s), 3.84 (1H, dd, ${}^{3}J_{trans} = 3.0$ Hz, ${}^{3}J_{cis} = 6.9$ Hz), 3.76 (1H, br s), 3.66 (1H, dd, ${}^{3}J = 6.3$ Hz, ${}^{2}J = 11.3$ Hz) and 3.50 (1H, dd, ${}^{3}J$ = 7.3 Hz, ${}^{2}J$ = 11.3 Hz), 1.84 (1H, dt, J = 6.3 Hz), 1.76 (1H, t, J = 6.4 Hz) and 1.50 (1H, dd, J = 3.3 and 5.7 Hz), 1.26 (1H, dd, ${}^{2}J = 4.8$ Hz, ${}^{3}J_{cis} = 8.4$ Hz) and 0.76 (1H, t, ${}^{2}J = {}^{3}J_{trans} =$ 4.8 Hz); $^{13}\mathrm{C}$ NMR δ 152.78, 151.86, 150.57, 145.00, 131.24, 64.39, 31.25, 20.19, 11.32, 9.62; EI-MS 253 (3.9) and 251 (M + H, 13.2), 252 (3.0) and 250 (M, 4.7), 235 (13.8) and 233 (M - OH, 43.6), 221 (67.5) and 219 (M - CH₂OH, 100.0); EI-MS calcd for C₁₁H₁₁³⁵ClN₄O 250.0621, found 250.0618.

9-(5-Hydroxymethylspiropentyl-1-yl)adenines 12a, 13a, 14a, and 15a. A mixture of 6-chloro-9-(5-hydroxymethylspiropentyl-1-yl)purine **26a, 26b, 26c**, or **26d** in 25% NH₃ in methanol (50 mL) was heated in an autoclave at 100 °C (oil bath) for 15 h. After cooling, the volatile components were evaporated, and the crude product was chromatographed on a silica gel column in CH_2Cl_2 -methanol (100:5 \rightarrow 100:10) to give compound **12a, 13a, 14a**, or **15a**.

Data for proximal isomer 12a: yield 126 mg (80%) from 26a (172 mg, 0.69 mmol); mp 235-237 °C; UV max (EtOH) 261 (¢ 14 000), 209 (¢ 19 000) nm; ¹H NMR (500 MHz, DMSO*d*₆) δ 8.11 (2H, 2 overlapped s, H₂ and H₈), 7.19 (2H, s, NH₂), 4.35 (1H, t, J = 5.4 Hz, OH), 4.01 (1H, dd, ${}^{3}J_{trans} = 3.5$ Hz, ${}^{3}J_{cis} = 7.5$ Hz, H₁), 2.95 (1H, dt, ${}^{3}J = 5.5$ Hz, ${}^{2}J = 11.0$ Hz) and 2.82 (1H, dd, ${}^{3}J = 4.5$ and 7.5 Hz, ${}^{2}J = 12.0$ Hz, H_{6"} and H₆'), 2.01 (1H, dd, J = 4.0 and 5.5 Hz, H_{2"}), 1.49 (2H, m, H_{2'} and $H_{5'}$), 1.00 (1H, dd, ${}^{2}J = 4.5$ Hz, ${}^{3}J_{cis} = 7.5$ Hz, $H_{4'}$), 0.89 (1H, d, J = 4.0 and 4.5 Hz, $H_{4''}$); ¹³C NMR (125.7 MHz) δ 156.37, 152.74, 151.15, 139.53, 119.51 (purine), 62.29 (C_{6'}), 32.07 (C1'), 20.72 (C5'), 19.96 (C3'), 11.93 (C2'), 10.70 (C4'); EI-MS m/z 232 (M + H, 15.2), 231 (M, 9.1), 214 (M - OH, 79.6), 200 (M - CH₂OH, 100.0), 135 (adenine, 53.9); HRMS calcd for C₁₁H₁₃N₅O 231.1120, found 231.1116. Anal. Calcd for C₁₁H₁₃N₅O: C, 57.12; H, 5.67; N, 30.29. Found: C, 57.21; H, 5.77; N, 30.14.

Data for medial-syn isomer 13a: yield 139 mg (88%) from **26b** (160 mg, 0.64 mmol); mp 188–190 °C; UV max (EtOH) 261 (ϵ 14 700), 208 (ϵ 20 400) nm; ¹H NMR (500 MHz, DMSO- d_6) δ 8.12 (1H, s, H₂), 8.11 (1H, s, H₈), 7.20 (2H, s, NH₂), 4.60 (1H, t, J = 5.5 Hz, OH), 3.86 (1H, dd, ³J_{trans} = 3.5 Hz, ³J_{cis} = 7.0, H₁), 3.50 (1H, td, ³J = 5.5 Hz, ²J = 11.0 Hz) and 3.20 (1H, ddd, ³J = 4.5 and 7.5 Hz, ²J = 11.5 Hz, H_{6"} and H₆), 1.65 (1H, dd, ^J = 3.5 and 5.5 Hz, H_{2"}), 1.49 (2H, apparent t, J = 5.5 Hz, H_2 and H₅), 1.23 (1H, dd, ²J = 4.5 Hz, ³J_{cis} = 8.0, H₄), 0.75 (1H, t, ²J = ³J_{trans} = 4.5 Hz, H_{4"}); ¹³C NMR (125.7 MHz) δ 156.38, 152.87, 150.95, 139.93, 119.19 (purine), 64.21 (C_6), 30.86 (C_1), 20.24 (C_5), 18.77 (C_3), 11.45, 11.21 (C_2 , C_4); EI-MS *m*/*z* 232 (M + H, 14.0), 231 (M, 14.5), 214 (M - OH, 66.1), 200 (M - CH₂OH, 100.0), 135 (adenine, 54.8); HRMS calcd for C₁₁H₁₃N₅O 231.1120, found 231.1120. Anal. Calcd for C₁₁H₁₃N₅O·0.9H₂O: C, 53.39; H, 6.03; N, 28.30. Found: C, 53.16; H, 5.89; N, 28.64.

Data for medial-anti isomer 14a: yield 136 mg (75%) from **26c** (195 mg, 0.78 mmol); mp 185–187 °C; UV max (EtOH) 261 (ϵ 14 800), 209 (ϵ 19 700) nm; ¹H NMR (500 MHz, DMSO- d_6) δ 8.11 (1H, s, H₂), 8.10 (1H, s, H₈), 7.21 (2H, s, NH₂), 4.60 (1H, t, J = 5.0 Hz, OH), 3.86 (1H, dd, ³ $J_{trans} = 3.5$ Hz, ³ $J_{cis} = 7.5$ Hz, H₁'), 3.71 (1H, td, ³J = 5.5 Hz, ²J = 11.0 Hz) and 3.68 (1H, td, ³J = 5.5 Hz, ²J = 11.0 Hz, H₆" and H₆'), 1.69 (1H, dd, J = 3.5 and 5.0 Hz, H₂"), 1.55 (1H, t, ³ $J_{cis} = {}^{2}J = 6.5$ Hz, H₂'), 1.47 (1H, m, H₅'), 0.95 (1H, dd, ²J = 4.5 Hz, ³ J_{cis} = 8.0 Hz, H₄'), 0.75 (1H, t, ${}^{2}J = {}^{3}J_{trans} = 4.5$ Hz, H₄"); ¹³C NMR (125.7 MHz) δ 156.41, 152.91, 151.08, 140.69, 119.28 (purine), 63.43 (C₆'), 29.26 (C₁'), 21.13 (C₅'), 20.61 (C₃'), 12.40 (C₂'), 9.03 (C₄'); EI-MS *m*/*z* 232 (M + H, 3.0), 231 (M, 8.2), 230 (M - H, 8.2), 214 (M - OH, 63.7), 200 (M - CH₂OH, 100.0), 135 (adenine, 62.4); HRMS calcd for C₁₁H₁₃N₅O 231.1120, found 231.1117. Anal. Calcd for C₁₁H₁₃N₅O: C, 57.12; H, 5.67; N, 30.29. Found: C, 56.91; H, 5.68; N, 30.41.

Data for distal isomer 15a: yield 240 mg (91%) from 26d (285 mg, 1.36 mmol); mp 211-214 °C; UV max (EtOH) 261 (e 15 400), 209 (ϵ 20 800) nm; ¹H NMR (500 MHz, DMSO- d_6) δ 8.10 (1H, s, H₂), 8.09 (1H, s, H₈), 7.21 (2H, s, NH₂), 4.57 (1H, t, J = 5.5 Hz, OH), 3.74 (1H, dd, ${}^{3}J_{trans} = 3.0$ Hz, ${}^{3}J_{cis} = 7.5$ Hz, H₁), 3.44 (1H, td, ${}^{3}J = 5.5$ Hz, ${}^{2}J = 12.0$ Hz) and 3.32 (1H, ddd, ${}^{3}J$ = 5.5 and 7.0 Hz, ${}^{2}J$ = 12.0 Hz, H_{6"} and H₆), 1.64 (2H, m, $H_{2'}$ and $H_{5'}$), 1.54 (1H, dd, J = 3.0 and 5.0 Hz, $H_{2''}$), 1.10 (1H, dd, ${}^{2}J = 4.0$ Hz, ${}^{3}J_{cis} = 8.0$ Hz, H₄), 0.66 (1H, dd, J = 4.0 and 4.4 Hz, H_{4"}); ¹³C NMR (125.7 MHz) δ 156.39, 152.99, 151.06, 140.62, 119.14 (purine), 63.74 (C_{6'}), 30.53 (C_{1'}), 20.53, 20.48 (C_{5'}, C_{3'}), 10.86 (C_{2'}), 9.34 (C_{4'}); EI-MS m/z 232 (M + H, 3.8), 231 (M, 13.0), 230 (6.0), 214 (M - OH, 67.7), 202 (22.6), 200 (M – CH₂OH, 100.0), 187 (16.8), 146 (17.5), 135 (adenine, 56.3); HRMS calcd for C₁₁H₁₃N₅O 231.1120, found 231.1112. Anal. Calcd for C₁₁H₁₃N₅O: C, 57.12; H, 5.67; N, 30.29. Found: C, 56.91; H, 5.68; N, 30.41.

2-Acetamino-6-chloro-9-(5-hydroxymethylspiropent-1-yl)purines 30a, 30b, 30c, and 30d. Compounds **30a–30d** were prepared by a modification of the procedure employed for the synthesis of **26a–26d.** 2-Acetamino-4,6-dichloro-5-nitropyrimidine in DMF at 0 °C was used in reactions with aminospiropentanes **25a–25d.** The products **30a–30d** were chromatographed in CH_2Cl_2 –MeOH (40:1 \rightarrow 20:1).

Data for *proximal* **isomer 30a**: yield 212 mg (41%) from **25a** (250 mg, 1.69 mmol), 2-acetamino-4,6-dichloro-5-nitropyrimidine (470 mg, 1.86 mmol), Et₃N (0.485 mL, 3.5 mmol) in DMF (10.0 mL), SnCl₂·H₂O (2.28 g, 10.2 mmol), and CH(OEt)₃ (15 mL); mp 200–205 °C; UV max (EtOH) 289 (ϵ 10 200), 235 (ϵ 24 800), 204 (ϵ 17 100) nm; ¹H NMR (DMSO-*d*₆) δ 10.80 (1H, s), 8.49 (1H, s), 4.16 (1H, t, J = 4.5 Hz), 4.01 (1H, dd, ³*J*_{trans} = 3.0 Hz, ³*J*_{cis} = 7.2 Hz), 3.09 (1H, dd, ³*J* = 4.8 Hz, ²*J* = 10.0 Hz) and 2.92 (1H, dd, ³*J* = 5.5 Hz, ²*J* = 11.0), 2.20 (3H, s), 2.15 (1H, t, *J* = 4.0 Hz), 1.50 (2H, m), 0.97 (1H, dd, ²*J* = 4.2 Hz, ³*J*_{cis} = 7.5 Hz), 0.85 (1H, t, ²*J* = ³*J*_{trans} = 4.2 Hz); ¹³C NMR δ 169.21, 154.29, 152.16, 149.04, 145.59, 127.93, 62.28, 32.58, 24.99, 20.48, 20.07, 11.07, 10.74.

Data for medial-syn isomer 30b: yield 303 mg (58%) from 25b (252 mg, 1.70 mmol), 2-acetamino-4,6-dichloro-5-nitropyrimidine (478 mg, 1.90 mmol), Et₃N (0.475 mL, 3.40 mmol) in DMF (10.0 mL), SnCl₂·H₂O (2.30 g, 10.2 mmol), and CH(OEt)₃ (15 mL); mp 233-235 °C; UV max (EtOH) 288 (e 10 500), 260 (e 7 900), 234 (e 26 400), 203 (e 18 400) nm; ¹H NMR (DMSO d_6) δ 10.80 (1H, s), 8.50 (1H, s), 4.49 (1H, t, J = 5.5 Hz), 3.87 (1H, dd, ${}^{3}J_{trans} = 3.0$ Hz, ${}^{3}J_{cis} = 6.9$ Hz), 3.49 (1H, td, ${}^{3}J = 5.5$ Hz, ${}^{2}J = 11.0$ Hz) and 3.13 (1H, ddd, ${}^{3}J = 4.5$ and 6.0 Hz, ${}^{2}J$ = 10.5 Hz), 2.20 (3H, s), 1.73 (1H, m), 1.53 (2H, m), 1.25 (1H, dd, ${}^{2}J = 4.2$ Hz, ${}^{3}J_{cis} = 8.1$ Hz), 0.76 (1H, t, ${}^{2}J = {}^{3}J_{trans} = 4.2$ Hz); $^{13}\mathrm{C}$ NMR δ 169.76, 154.01, 152.15, 149.40, 145.97, 127.49, 64.91, 31.15, 24.88, 20.46, 18.54, 11.18, 10.98; EI-MS m/z 309 (1.1) and 307 (M, 3.9), 292 (3.0) and 290 (8.8, M - OH), 172 (8.7) and 170 (21.7, purine base – CH₂=C=O + H), 171 (15.9) and 169 (32.9, purine base - CH₂=C=O), 43 (Ac, 100.0); HRMS calcd for C13H1435ClN5O2 307.0836, found 307.0831. Anal. Calcd for C₁₃H₁₄ClN₅O₂: C, 50.74; H, 4.59; N, 22.76. Found: C, 50.58; H, 4.80; N, 22.69.

Data for *medial-anti* isomer 30c: yield 193 mg (50%) from 25c (185 mg, 1.25 mmol), 2-acetamino-4,6-dichloro-5nitropyrimidine (330 mg, 1.31 mmol), Et₃N (0.350 mL, 2.5 mmol) in DMF (10 mL), SnCl₂·H₂O (1.70 g, 7.5 mmol), and CH(OEt)₃ (20 mL); mp 194–196 °C; UV max (EtOH) 289, 260, 234, 204 nm; ¹H NMR (DMSO- d_6) δ 10.80 (1H, s), 8.49 (1H, s), 4.47 (1H, t, J = 5.5 Hz, OH), 3.91 (1H, dd, ³ $J_{trans} = 3.0$ Hz, ³ $J_{cis} = 6.9$ Hz), 3.72 (2H, m), 2.20 (3H, s), 1.71 (1H, dd, J = 3.5and 5.4 Hz), 1.57 (1H, dd, ²J = 5.4 Hz, ³ $J_{cis} = 6.9$ Hz), 1.44 (1H, m), 0.93 (2H, m); ¹³C NMR δ 169.04, 154.17, 152.27, 149.36, 146.72, 127.63, 63.36, 29.81, 24.81, 21.13, 20.76, 12.63, 8.98; EI-MS m/z 309 (1.1) and 307 (M, 5.8), 292 (7.0) and 290 (21.3, M – OH), 172 (25.2) and 170 (59.4, purine base – CH₂= C=O + H), 171 (46.5) and 169 (100.0, purine base – CH₂= C=O); HRMS calcd for C₁₃H₁₄N₅O₂³⁵Cl 307.0836, found 307.0840.

Data for *distal* **isomer 30d**: yield 278 mg (48%) from **25d** (282 mg, 1.90 mmol), 2-acetamino-4,6-dichloro-5-nitropyrimidine (510 mg, 2.03 mmol), Et₃N (0.532 mL, 3.80 mmol) in DMF (16 mL), SnCl₂·H₂O (2.57 g, 11.4 mmol), and CH(OEt)₃ (20 mL); amorphous solid; UV max (EtOH) 289, 260, 234, 204 nm; ¹H NMR (DMSO-*d*₆) δ 10.80 (1H, s), 8.49 (1H, s), 4.55 (1H, t, J = 5.4 Hz), 3.78 (1H, dd, ${}^{3}J_{trans} = 3.0$ Hz, ${}^{3}J_{cis} = 6.8$ Hz), 3.44 (1H, qt, J = 5.7 Hz) and 3.28 (1H, qt, J = 6.0 Hz), 2.20 (3H, s), 1.66 (2H, m), 1.59 (1H, t, ${}^{2}J = {}^{3}J_{trans} = 4.2$ Hz), 1.22 (1H, dd, ${}^{2}J = 4.2$ Hz, ${}^{3}J_{cis} = 8.1$ Hz), 0.93 (1H, t, ${}^{2}J = {}^{3}J_{trans} = 4.2$ Hz); 13C NMR δ 169.29, 154.14, 152.45, 149.33, 146.32, 127.43, 63.66, 30.98, 25.0, 20.5, 10.8, 9.3; EI-MS *m*/z 309 (2.8) and 307 (9.7, M), 292 (4.5) and 290 (19.2, M – OH), 172 (22.6) and 170 (64.2, purine base – CH₂=C=O + H), 171 (43.9) and 169 (100.0, purine base – CH₂=C=O).

9-(5-Hydroxymethylspiropent-1-yl)guanines 12b, 13b, 14b, and 15b. A solution of compound **30a**, **30b**, **30c**, or **30d** (150–300 mg, 0.5–1 mmol) in formic acid (80%, 10 mL) was heated at 90 °C for 16 h, whereupon it was evaporated. The solid residue was dissolved in water, and after lyophilization the crude product was stirred in NH₃/MeOH (20%, 8 mL) for 4 h at room temperature. The solvent was removed and the product recrystallized from MeOH–H₂O (15:1) to give compound **12b, 13b, 14b**, or **15b** as a white solid.

Data for *proximal* **isomer 12b:** yield 132 mg (77%) from **30a** (210 mg, 0.68 mmol); mp 235–237 °C dec; UV max (EtOH) 257 (ϵ 14 200), 206 (ϵ 15 300) nm; ¹H NMR (DMSO- d_6) δ 10.59 (1H, s, NH), 7.65 (1H, s, H₈), 6.46 (2H, s, NH₂), 4.39 (1H, t, J = 5.0 Hz, OH), 3.78 (1H, dd, ³J_{trans} = 3.3 Hz, ³J_{cis} = 6.9 Hz, H₁), 3.06 (1H, m) and 2.81 (1H, m, H_{6"} and H₆), 1.84 (1H, t, ²J = ³J_{trans} = 4.5 Hz, H_{2"}), 1.49 (1H, m, H_{5"}), 1.39 (1H, t, ³J_{cis} = 6.4 Hz, H₂), 0.97 (1H, dd, ²J = 3.9 Hz, ³J_{cis} = 6.6 Hz, H₄), 0.82 (1H, t, ²J = ³J_{trans} = 4.0 Hz, H_{4"}); ¹³C NMR δ 157.26, 153.85, 152.94, 135.61, 117.28 (purine), 62.37 (C₆), 31.74 (C₁), 20.58, 19.86 (C₅', C₃), 12.0, 10.6 (C_{2'}, C₄); FAB-MS m/z 249 (M, 15.6), 248 (M + H, 100.0), 215 (M - H - CH₂OH, 2.1). Anal. Calcd for C₁₁H₁₃N₅O₂·0.2H₂O: C, 52.67; H, 5.38; N, 27.92. Found: C, 52.48; H, 5.57; N, 27.78.

Data for medial-syn isomer 13b: yield 199 mg (84%) from **30b** (290 mg, 0.94 mmol); mp 310–315 °C; UV max (EtOH) 256 (ϵ 13 800), 206 (ϵ 17 600) nm; ¹H NMR (DMSO- d_6) δ 10.60 (1H, s, NH), 7.65 (1H, s, H₈), 6.48 (2H, s, NH₂), 4.60 (1H, br, OH), 3.66 (1H, dd, ³*J*_{trans} = 3.3 Hz, ³*J*_{cis} = 6.9 Hz, H₁), 3.50 (1H, dd, ³*J* = 6.0 Hz, ²*J* = 11.0 Hz) and 3.20 (1H, dd, ³*J* = 7.8 Hz, ²*J* = 11.0 Hz, H_{6''} and H₆), 1.48 (2H, m, H_{2''} and H₅), 1.39 (1H, t, *J* = 6.2 Hz, H₂), 1.16 (1H, dd, ²*J* = 4.2 Hz, ³*J*_{cis} = 8.1 Hz, H₄), 0.71 (1H, t, ²*J* = ³*J*_{trans} = 4.2 Hz, H_{4''}); ¹³C NMR δ 157.21, 153.95, 152.70, 136.00, 116.88 (purine), 64.19 (C₆), 30.64 (C₁), 19.98, 18.70 (C₅, C₃), 11.37 (C_{2'}, C₄); FAB-MS *m*/*z* 249 (M, 15.5), 248 (M + H, 100.0), 217 (M + H - CH₂OH, 16.8). Anal. Calcd for C₁₁H₁₃N₅O₂·0.2H₂O: C, 52.67; H, 5.38; N, 27.92. Found: C, 52.38; H, 5.54; N, 27.83.

Data for *medial-anti* isomer 14b: yield 125 mg (80%) from **30c** (190 mg, 0.62 mmol); mp 292–295 °C dec; UV max (EtOH) 256 (ϵ 13 300), 206 (ϵ 17 000) nm; ¹H NMR (DMSO d_6) δ 10.54 (1H, s), 7.66 (1H, s, H₈), 6.35 (2H, s), 4.51 (1H, t, J = 5.7 Hz, OH), 3.65 (2H, m, H₁' + H_{6"}) and 3.55 (1H, td, ³J = 6.5 Hz, ²J = 13.0 Hz, H₆), 1.46 (3H, m, H₅', H₂' and H_{2"}), 0.96 (1H, dd, ²J = 4.2 Hz, ³J_{cis} = 7.8 Hz, H₄), 0.71 (1H, t, ²J = ³J_{trans} = 4.5 Hz, H_{4"}); ¹³C NMR δ 157.22, 153.89, 152.80, 136.90, 116.93 (purine), 63.38 (C₆'), 29.03 (C₁'), 21.10, 20.28 (C₅', C₃), 12.8, 9.0 (C₂', C₄); FAB-MS *m*/*z* 249 (M, 15.2), 248 (M + H, 100.0), 215 (M - H - CH₂OH, 3.7). Anal. Calcd for C₁₁H₁₃N₅O₂· 0.2H₂O: C, 52.67; H, 5.38; N, 27.92. Found: C, 52.46; H, 5.56; N, 27.98.

Data for *distal* **isomer 15b:** yield 180 mg (85%) from **30d** (260 mg, 0.85 mmol); mp 305–310 °C dec; UV max (EtOH) 256 (ϵ 13 500), 206 (ϵ 16 100) nm; ¹H NMR (DMSO- d_6) δ 10.55 (1H, s, NH), 7.68 (1H, s, H₈), 6.40 (2H, s, NH₂), 4.52 (1H, t, J = 5.2 Hz, OH), 3.55 (1H, dd, ³J_{trans} = 3.3 Hz, ³J_{cis} = 6.9

Hz, H₁'), 3.39 (1H, td, ${}^{3}J = 5.7$ Hz, ${}^{2}J = 11.4$ Hz) and 3.28 (1H, td, J = 5.7 and 11.4 Hz, H_{6"} and H₆'), 1.54 (2H, m, H_{2"} and H₅'), 1.38 (1H, t, ${}^{2}J = {}^{3}J_{trans} = 4.3$ Hz, H_{2"}), 1.11 (1H, dd, ${}^{3}J_{trans} = 4.2$ Hz, ${}^{3}J_{cis} = 8.0$ Hz, H₄'), 0.65 (1H, t, ${}^{2}J = {}^{3}J_{trans} = 4.3$ Hz, H_{4"}); ${}^{13}C$ NMR δ 157.25, 153.89, 152.87, 136.84, 117.00 (purine), 63.7 (C₆'), 30.33 (C₁'), 20.40, 20.28 (C₅', C₃'), 10.9, 9.3 (C_{2'}, C₄'); FAB-MS *m*/*z* 249 (M, 17.5), 248 (M + H, 100.0), 216 (M - CH₂OH, 19.1). Anal. Calcd for C₁₁H₁₃N₅O₂·0.2H₂O: C, 52.67; H, 5.38; N, 27.92. Found: C, 52.25; H, 5.56; N, 27.58.

medial-syn-9-(5'-Hydroxymethylspiropentan-1'-yl)adenine (R,S)-4'-(methylphenylphosphoryl-(P→N)-L-alaninate (34). A suspension of medial-syn-9-(5'-hydroxymethylspiropentan-1'-yl)adenine (13a; 200 mg, 0.866 mmol) in pyridine (15 mL) was sonicated for 10 min with external ice-cooling. A solution of phenyl chlorophosphoralaninate³² in THF (0.161 M, 21.5 mL, 3.46 mmol) was then added with stirring followed by N-methylimidazole (6.93 mmol, 0.552 mL). The stirring was continued at room temperature for 4 h. The solvent was evaporated under reduced presure at 40 °C, and the residue was purified by chromatography on a silica gel column using $CH_2Cl_2-CH_3OH$ (20:1 \rightarrow 10:1) to give compound **34** (198 mg, 49%) as a colorless foam: HPLC (H₂O-MeCN, 4:1, broad peak,³⁶ retention time 7.72 min, purity 98.2%); UV max (EtOH) 261 (ε 13 100), 206 (ε 25 400) nm; ¹H NMR (CDCl₃) δ 8.22 (1H, s) and 7.84, 7.81, 7.74 and 7.72 (1H, 4s, H₈ and H₂), 7.10 (2H, m) and 7.03 (3H, m, Ph, 6.72 (2H, s, NH₂), 4.74 (1H, m, NH of Ala), 4.21 (1H, m, H_{1'}), 3.80 (3H, H_{6'} and CH of Ala), 3.57 (3H, 4s, OCH3), 1.73 (1H, m, H5'), 1.50 (2H, m, H2' and H2"), 1.44 (1H, m) and 0.90 (2H, m, H₄' and H₄"), 1.20 (3H, m, CH₃); ¹³C NMR & 174.08 (CO), 155.83, 152.95, 152.77, 150.90, 150.68, 139.84, 129.51, 124.70, 120.65, 120.01, 119.33 (purine), 69.70, 52.27, 50.07, 30.74, 20.62, 20.22, 16.37, 11.52, 10.99; EI-MS m/z 473 (M + H, 1.0), 472 (M, 2.8), 94 (100.0); ³¹P NMR 2.71, 2.70, 2.62, 2.58; HRMS calcd for C₂₁H₂₅N₆O₅P 472.1624, found 472.1632. Anal. Calcd for C21H25N6O5P: C, 53.39; H, 5.33; N, 17.79. Found: C, 53.27; H, 5.55; N, 17.55.

Adenosine Deaminase Assay.⁶ Compounds 12a–15a (0.6 mg, 2.6 μ mol) and adenosine deaminase from calf intestine (0.45 unit) were incubated in 0.05 M Na₂HPO₄ (pH 7.5, 0.4 mL) at room temperature with magnetic stirring. Aliquots were periodically withdrawn and examined by TLC in CH₂-Cl₂–MeOH (9:1). The spots of starting material and deamination product were eluted with ethanol, and the UV spectra were taken. Only compound 14a was deaminated with $t_{1/2}$ > 120 h.

PLE Assay.³¹ A magnetically stirred mixture of compound **34** (0.72 mg, 1.5 μ M) and PLE (200 units) was incubated at 40 °C. TLC in CH₂Cl₂–MeOH (9:1) and 2-propanol–NH₄OH–H₂O (7:1:2) showed complete hydrolysis of **34** after 24 h.

Acknowledgment. Our thanks are due to Dr. Steve M. Hannick, Abbott Laboratories, Abbott Park, IL, for a synthetic procedure for 2-acetamino-6-chloro-5-nitro-4-pyrimidinol and the Central Instrumentation Facility, Department of Chemistry, Wayne State University (Dr. Robin J. Hood, Director), for mass spectra. We thank Roger G. Ptak and Julie M. Breitenbach for some antiviral assays. The work described herein was supported by U.S. Public Health Service Research Grants RO1-CA32779 (J.Z.) RO1-CA44358 (Y.-C.C.) from the National Cancer Institute, U19-AI31718, and RO1-AI33332 (J.C.D.) and Contract NO1-AI35177 (E.R.K.) from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.

Supporting Information Available: Spectroscopic data for all new compounds. DEPT and (H,H) COSY spectra of **12a**, **13a**, **14a**, and **15a** and (H,C) COSY spectra of **14a** and **15a**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO991030R

⁽³⁶⁾ The product is a mixture of four diastereoisomers; see the $^{31}\mathrm{P}$ NMR spectrum.